
Imperial College London
Department of Computing

GraphAware:
Towards Online Analytical Processing in Graph Databases

by

Michal Bachman

Submitted in partial fulfilment of the requirements for the
MSc Degree in Computing (Distributed Systems) of Imperial College London

September 2013

Abstract

Graph databases are becoming increasingly popular as an alternative to relational databases for man-

aging complex, densely-connected, semi-structured data. Whilst primarily optimised for online transac-

tional processing, graph databases would greatly benefit from online analytical processing capabilities.

Since relational databases were introduced over four decades ago, they have acquired online analytical

processing facilities; this is not the case with graph databases, which have only drawn mainstream

attention in the past few years.

In this project, we study the problem of online analytical processing in graph databases that use the

property graph data model, which is a graph with properties attached to both vertices and edges. We

use vertex degree analysis as a simple example problem, create a formal definition of vertex degree

in a property graph, and develop a theoretical vertex degree cache with constant space and read time

complexity, enabled by a cache compaction operation and a property change frequency heuristic.

We then apply the theory to Neo4j, an open-source property graph database, by developing a Rela-

tionship Count Module, which implements the theoretical vertex degree caching. We also design and

implement a framework, called GraphAware, which provides supporting functionality for the module

and serves as a platform for additional development, particularly of modules that store and maintain

graph metadata.

Finally, we show that for certain use cases, for example those in which vertices have relatively high

degrees and edges are created in separate transactions, vertex degree analysis can be performed sev-

eral orders of magnitude faster, whilst sacrificing less than 20% of the write throughput, when using

GraphAware Framework with the Relationship Count Module.

By demonstrating the extent of possible performance improvements, exposing the true complexity of a

seemingly simple problem, and providing a starting point for future analysis and module development,

we take an important step towards online analytical processing in graph databases.

Keywords: Graph Databases, Neo4j, Analytics, OLAP, Property Graph, Vertex Degree, GraphAware.

i

ii

Acknowledgements

First and foremost, I would like to thank Dr. Yike Guo for his willingness to be my supervisor and for

his time and valuable guidance, especially at the outset of this project.

A huge thank you also goes to Dr. William Knottenbelt for his enthusiasm, his willingness to go the

extra mile for his students, and for his invaluable help in the final stages of this project.

It is my great pleasure to acknowledge Dr. Jim Webber, who planted the idea of graph database analytics

into my head in the first place and supported me throughout the project, with a contagious passion for

graphs. I hope you enjoy your holiday reading!

I am indebted to my friend, Adam "Tarra" George, for being the grammar and spelling police, taking his

time to carefully read through the report a number of times, and making the effort to fully understand

it. Ta, m’duck!

I would like to thank my parents for teaching me that education is one’s most valuable asset and sup-

porting me in this endeavour, both emotionally and financially. Now, my education is finally complete

to my father’s standards!

Most importantly, I would like to thank my fiancée, Daniela, who is still proofreading the report as I am

writing these lines, for her love, patience, and support.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Aims . 2

1.3 Contributions . 2

1.4 Report Structure . 4

2 Background 5

2.1 Graph Databases . 5

2.2 Basic Definitions . 6

2.3 Property Graph . 8

2.4 Neo4j . 11

2.5 Online Analytical Processing . 13

2.6 Problem Definition . 14

3 Related Work 17

3.1 OLAP in Graph Databases . 17

v

vi CONTENTS

3.2 Structural Analytics . 20

3.3 Summary . 22

4 Theory 23

4.1 Basic Definitions . 23

4.2 Vertex Degrees in Property Graphs . 24

4.3 General-to-Specific Ordering . 28

4.4 Naive Caching . 33

4.5 Constant Space Complexity Caching . 35

4.6 Property Change Frequency Function . 40

5 Implementation 47

5.1 GraphAware Framework . 48

5.2 Relationship Count Module . 68

6 Evaluation 83

6.1 Functional Testing . 83

6.2 Performance Testing . 85

7 Conclusion and Future Work 100

7.1 Achievements . 100

7.2 Applications . 101

7.3 Future Work . 101

Bibliography 102

Appendices 106

A Symbols Reference 107

B GraphAware Framework User Guide 110

B.1 GraphAware Framework . 110

C Relationship Count Module User Guide 123

C.1 GraphAware Relationship Count Module . 123

vii

viii

List of Tables

6.1 Times (ms) Taken to Create 10,000 Relationships with No Properties 90

6.2 Throughput when Creating Relationships with No Properties, as a Percentage of Full

Throughput . 90

6.3 Times (ms) Taken to Delete 10,000 Relationships with No Properties 91

6.4 Throughput when Deleting Relationships with No Properties, as a Percentage of Full

Throughput . 91

6.5 Read Performance as a Speedup Factor, No Properties on Relationships 93

6.6 Times (ms) Taken to Create 10,000 Relationships, Two Properties Each, No Compaction 95

6.7 Throughput when Creating Relationships with Two Properties (No Compaction), as a

Percentage of Full Throughput . 95

6.8 Times (ms) Taken to Create 1,000 Relationships, with Compaction 97

6.9 Throughput when Creating Relationships with Compaction, as a Percentage of Full Through-

put . 97

6.10 Read Performance as a Speedup Factor, Two Properties on Relationships 99

ix

x

List of Figures

2.1 Example Domain Modelled as a Property Graph . 8

2.2 Alternative Movie Database Domain Model . 9

2.3 Example Graph Database Query . 10

2.4 Neo4j High-Level Architecture . 11

2.5 Neo4j Data Storage . 12

4.1 Movie Database with User Ratings . 25

4.2 Part of a Lattice of Properties Descriptions . 29

4.3 Detailed View on Part of an Infinite Lattice of Properties Descriptions 30

4.4 Lattice Formed by the Generalisation Set of a Relationship Description 37

5.1 Neo4j Core API (with a few irrelevant methods omitted) . 49

5.2 Interfaces and Abstract Classes for Relationship Representations 50

5.3 Neo4j Transaction Event Handler API . 53

5.4 GraphAware Improved Transaction Event API . 55

5.5 Lazy Implementation of Improved Transaction Event API . 56

5.6 Base Classes and Interfaces for GraphAware PropertyContainer Decorators 57

5.7 Node and Relationship Snapshots . 58

5.8 Strategies for Including Information . 59

xi

5.9 Filtered Transaction Data . 60

5.10 Filtered Nodes and Relationships . 60

5.11 Batch Operations Support . 62

5.12 Core GraphAware Framework Classes . 63

5.13 Class Hierarchy for Framework Configuration . 65

5.14 Sequence Diagram of Framework Startup and Shutdown . 66

5.15 Sequence Diagram of Framework Runtime Usage . 67

5.16 Cacheable Properties Description, Related Classes, and Supporting Framework Classes . 69

5.17 Cacheable Relationship Description and Related Classes . 70

5.18 Relationship and Property Query Descriptions . 72

5.19 Additional Strategies for Relationship Count Module . 73

5.20 Relationship Count Caching Node . 74

5.21 Relationship Count Compactor . 76

5.22 Relationship Count Cache . 77

5.23 Full Relationship Count Module . 78

5.24 Relationship Counting Nodes . 79

5.25 Relationship Counters . 81

6.1 Relationship Write Performance (No Properties on Relationships) 89

6.2 Vertex Degree Read Performance (No Properties on Relationships) 92

6.3 Relationship Write Performance (Two Properties on Relationships, No Compaction) . . . 94

6.4 Relationship Write Performance (Properties on Relationships, with Compaction) 96

6.5 Vertex Degree Read Performance (Two Properties on Relationships) 98

xii

Chapter 1

Introduction

1.1 Motivation

Graph databases and the graph data model are becoming increasingly popular as a complement of, and

sometimes an alternative to, traditional relational databases and the relational data model, giving rise

to a growing desire for analysis of data modelled as graphs.

In contrast to relational databases and the relational data model, different graph databases employ

different kinds of graph-based data models. This project focuses on the data model used by Neo4j, a

popular open-source online transactional processing (OLTP) graph database. It is a directed graph with

labelled edges, where both vertices and edges have an arbitrary number of arbitrary key-value pairs

called attributes or properties. This model is referred to as the property graph model.

Numerous software systems and frameworks exist for large-scale graph processing. These solutions

typically take a static graph, in one form or another, and perform an offline, batch-like analytical

operation on the graph outside of the database, often utilising map-reduce frameworks.

Most relational databases posses online analytical processing (OLAP) features, which have also been

extensively studied in academia. In-database online analytical processing for graph databases, however,

has not received much academic attention, which is especially true for OLTP property graph databases.

Perhaps as a consequence, today’s graph databases typically provide no OLAP capabilities.

Graph databases are optimised for local graph traversals, yet many useful graph algorithms perform

global graph operations. An analytical query that runs in time linearly proportional to the number of

vertices and/or edges might take hours in very large graphs. Such a query could hardly be called online

or real-time.

1

2 Chapter 1. Introduction

One does not even need to go as far as performing global graph operations to find poorly performing

analytical queries. The degree of a vertex, for example, is a simple, yet powerful and frequently needed

graph measure. In a property graph with labelled directed edges, the degree is not just a simple

edge count, since one must take into account edge labels and attributes. Inspecting every edge when

querying for a vertex degree, an algorithm with time complexity linearly proportional to the total

number of edges at the vertex, can be sufficiently slow to be disqualified from being considered real-

time.

1.2 Aims

The ultimate objective of this project is to advance the field of computing towards OLAP on primarily

OLTP graph databases with the property graph data model. Whilst one can imagine a virtually unlimited

number of different types of analytical queries on a graph database, the aim is an in-depth investigation

of efficient querying for vertex degrees in property graphs, attempting to generalise the outcomes into

a form useful for further research, perhaps of other kinds of analytical queries. Neo4j is used for

validating and evaluating the outcomes of the research.

1.3 Contributions

The contribution of this project is twofold. First, a framework for Neo4j has been created, enabling

convenient development of modules that store and maintain pre-computed information about the graph.

Second, the problem of finding vertex degrees in a property graph has been studied in depth and an

efficient solution for vertex degree analysis has been found and implemented as a framework module.

The remainder of this section describes both contributions in more detail.

1.3.1 GraphAware Framework

A framework for Neo4j, called GraphAware, has been designed, fully implemented, tested and evalu-

ated. Adding no significant overhead, the framework enables convenient development of modules that

store pre-computed information about the graph, typically in the graph itself, and keep that information

up to date. The framework has a number of utilities that support such development and boasts three

key features:

1.3. Contributions 3

Module Lifecycle Management First of all, modules that wish to be made aware of about-to-be-

committed graph mutations register themselves with the framework, which in turn fully manages their

lifecycle: startup, (re-)initialisation, configuration and change detection thereof, runtime work delega-

tion, exception handling, and shutdown. At runtime, the framework informs the modules about graph

mutations right before they are committed to the database, allowing modules to react to these changes

by, for instance, performing additional mutations.

Graph Snapshots Secondly, a graph snapshot mechanism atop Neo4j transaction event API has been

introduced, allowing for easy analysis of graph mutations. Modules can inquire about created, deleted,

and changed vertices and edges, as well as traverse two versions of the graph: the “old" graph, i.e.,

a snapshot of the graph as it was before the transaction started, and the “new" graph, i.e., the future

version of the graph as it will be after the transaction commits.

Decorators and Representations Finally, a set of base classes has been created, simplifying the de-

velopment of custom vertex and edge representations and decorators. The utility of a string represen-

tation of an edge (including its attributes), for instance, has been demonstrated when storing some

pre-computed information about such an edge. Decorators, on the other hand, have been used to

increase performance by providing additional caching.

1.3.2 Efficient Vertex Degree Analysis

The problem of finding a vertex degree in a property graph has been studied in depth. Apart from

contributions stemming from that study, such as a formal definition of vertex degree in a property

graph, an efficient solution for caching vertex degrees on vertices themselves with constant space and

read time complexity has been found, resulting in the following additional contributions.

Compaction Algorithm It is possible and, in fact, not uncommon that some attributes take on a differ-

ent value for each edge. An example of that could be a timestamp attribute with a millisecond-precision

value indicating, when the edge was created. Caching the number of edges with such attributes would

require space linearly proportional to the number of edges. A compaction algorithm and a Property

Change Frequency heuristic have been devised, allowing the space requirement to be constant, whilst

keeping the resulting information loss as small as possible.

General-to-Specific Ordering In part, this has been enabled by the introduction of partial general-

to-specific ordering of edges with attributes and the development of a self-generalising edge represen-

4 Chapter 1. Introduction

tation.

Vertex Degree Module Finally, a vertex degree analysing module for the GraphAware Framework,

called the Relationship Count Module, has been designed, implemented, tested, and evaluated, putting

the ideas introduced above into practice. It has been demonstrated to increase the speed of vertex

degree analysis in some scenarios by several orders of magnitude, for as little penalty as 20% of edge

write throughput. This, per se, is already a useful outcome, as it can be readily used when efficient

vertex degree analysis is required in Neo4j. However, as an additional contribution, these results give

an indication of the possible performance improvements and penalties for future module developers.

Last but not least, the module serves as a reference implementation of a GraphAware module.

1.4 Report Structure

The rest of the report is organised as follows. Chapter 2 introduces the background for the research and

states the problem. Chapter 3 is a brief survey of related work. Chapter 4 analyses the problem intro-

duces a number of own definitions, theorems, proofs, and theoretical solutions. Chapter 5 describes the

design and implementation of the software that puts the theory into practice, while Chapter 6 presents

evaluation of the work. Chapter 7 comments on the evaluation and suggests topics for further research

in this area.

Appendix A serves as a reference of the symbols used throughout the report and especially in Chapter 4.

Appendices B and C provide a user guide for the GraphAware Framework and the Relationship Count

Module, respectively.

Chapter 2

Background

2.1 Graph Databases

In the last decade, the nature of data stored and processed by computer systems has changed in a

number of ways. First of all, the sheer volume of data mankind produces, stores, and processes is

growing very quickly. Secondly, data is becoming more complex and less structured. Finally, data is

becoming increasingly inter-connected.

At the same time, the architecture of database-backed software systems has evolved from database-

centric, where the database serves as an integration point between system components, towards service-

oriented, where system components integrate on API level, allowing for different kinds of data stores

in a single system.

Both of the trends outlined above gave rise to a new category of database management systems (DBMS)

called NoSQL. Sadalage and Fowler [22] provide an excellent overview of these and a discussion of the

definition, concluding that NoSQL refers to “an ill-defined set of mostly open-source databases, mostly

developed in the early 21st century, and mostly not using SQL”.

Sadalage and Fowler [22] further identify four broad categories of NoSQL databases: key-value, doc-

ument, column-family, and graph. The first three differ from relational database management systems

(RDBMSs) by using “aggregate data models”, i.e., operating on aggregates - units of data with more

complex structures than relations and tuples. Graph databases, on the other hand, have a substantially

different data model; they work with simple records and complex interconnections.

RDBMSs use the relational data model, first proposed by Codd [8], with relations, attributes, and

tuples. These are explained in detail in the vast amount of literature published on database systems,

e.g. Connolly and Begg [9] or Ullman et al. [24]. On the other hand, graph data model, in its simplest

5

6 Chapter 2. Background

from, operates with the notion of vertices and edges, familiar from graph theory. Graph theory is an

extensively studied field of discrete mathematics, dating back to at least mid-18th century [11].

Semantically, the graph data model is richer than the relational data model. Whilst relationships be-

tween entities have to be inferred in the relational model, they are modelled explicitly in a graph.

This has significant implications, both in that graph data is naturally multi-dimensional and that the

structure of the graph, in addition to its “contents” provides insightful information that can be analysed.

There are two ways graph data structures are typically represented in computer systems: as a collection

of adjacency lists, or as an adjacency matrix [10]. Systems assuming sparse graphs, i.e., graphs where

the number of edges is much smaller than the square number of vertices, prefer the former, because it

is more compact. Graphs are said to be stored and/or processed natively, if one of the aforementioned

representations, or an extension thereof, is used.

Graph database management systems (GDBMSs), or graph databases in short, allow real-time storage,

retrieval and modification of complex, semi-structured, highly-connected data, modelled as a graph

[21]. This ability is also referred to as online transactional processing (OLTP). Some graph databases,

such as Neo4j, store data natively as a graph, while others transform the data from/to another model

(e.g. relational). Either way, the exposed model, i.e., the data structures users interact with, is what all

graph databases have in common.

In contrast to OLTP graph databases, graph compute engines are technologies designed to perform

computations on large data sets, represented as graphs in one way or another, and may or may not

include a data storage capability. These technologies are primarily concerned with batch, potentially

parallel and/or distributed data analysis [21]. Graph compute engines are explicitly and completely

out of scope of this project.

2.2 Basic Definitions

Let us review some basic definitions from graph theory that will be used throughout the report. All

definitions in this section are taken or adapted from Diestel [11], unless indicated otherwise.

Graph A graph is a pair G = (V, E) of sets such that E ⊆ (V × V). The elements of V are vertices

or nodes of the graph G and the elements of E are its edges or relationships. Because literature on

graph theory typically talks about vertices and edges, while Neo4j and its APIs operate on nodes and

relationships respectively, these terms are used interchangeably throughout the report.

2.2. Basic Definitions 7

Order The order of a graph G, denoted |G|, is the number of vertices of G. Its number of edges is

denoted ||G||.

Incident Vertex A vertex v is incident with an edge e if v ∈ e; then e is an edge at v. An edge {x , y}

can be written as x y .

Vertex Degree The set of all edges in E at a vertex v is denoted E(v). The degree of a vertex v,

denoted as d(v), is the number |E(v)| of edges at v.

Subgraph Given two graphs G = (V, E) and G′ = (V ′, E′), G′ is a subgraph of G, written as G′ ⊆ G, if

V ′ ⊆ V and E′ ⊆ E. Furthermore, if G′ ⊆ G and G′ contains all the edges x y ∈ E with x , y ∈ V ′, then

G′ is an induced subgraph of G.

Path A path is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk}, E = {x0 x1, x1 x2, . . . , xk−1 xk}. The number of edges in a path is its length.

Directed Graph A directed graph G = (V, E, init, ter) is a graph G = (V, E) together with two maps

init : E → V and ter : E → V assigning every edge e ∈ E an initial vertex init(e), also called the tail,

and a terminal vertex ter(e), also called the head. The edge e is said to be directed from init(e) to ter(e).

There may be several edges between the same two vertices. If init(e) = ter(e), the edge e is called a

loop.

Vertex Degree Revisited Rather than about a vertex degree, we talk about indegree and outdegree

in a directed graph. Indegree, denoted din(v), is defined as the number |Ein(v)| of edges at v, where

Ein(v) ⊆ E(v) such that ∀ein ∈ Ein(v), ter(ein) = v. Similarly, outdegree, denoted dout(v), is defined as

the number |Eout(v)| of edges at v, where Eout(v) ⊆ E(v) such that ∀eout ∈ Eout(v), init(eout) = v. Note

that a loop adds one to both the outdegree and indegree of its vertex. Thus, in a graph with a single

vertex and a single edge, which is a loop at that vertex, the indegree of the vertex is one and so is its

outdegree1.

1the definitions in the last paragraph are our own

8 Chapter 2. Background

2.3 Property Graph

Property Graph Data Model A graph, i.e., pair G = (V, E), s.t. E ⊆ (V×V) as defined by Diestel [11],

is not a very powerful data model, because it does not provide any facilities for actual data storage.

Hence, graph databases typically employ extensions of this model, one of which is referred to as the

property graph model, which we formally define in Chapter 4. Informally, property graph model, as

used by Neo4j, is a set of vertices and directed, labelled edges, where both vertices and edges can have

an arbitrary number of arbitrary attributes. Attributes have a key, uniquely identifying the attribute,

and a value. Vertices and edges in a property graph are commonly referred to as property containers.

It is the combination of vertices, directed, labelled edges, and attributes that is used for modelling a

real-world domain.

name: "Drama"
type: "genre"

name: "Triller"
type: "genre"

name: "Pulp Fiction"
year: 1994
type: "movie"

DIRECTED

IS_OF_GENRE

name: "Quentin Tarantino"
type: "person"

name: "Director"
type: "occupation"

name: "Actor"
type: "occupation"

IS_OF_GENRE

ACTED_IN

name: "Samuel L. Jackson"
type: "person"

IS_A

IS
_A

IS
_A

ACTED_IN

role: "Jules Winnfield"

role: "Jimmie Dimmick"

Figure 2.1: Example Domain Modelled as a Property Graph

Example Property Graph Figure 2.1 shows a small subgraph of a hypothetical movie database mod-

elled as a property graph. Vertices, depicted as circles, represent real-world entities, in this case movies,

genres, actors, directors, etc. Directed edges, depicted as arrows labelled with capitalised character

strings, represent relationships between the entities. Labels give edges a semantic meaning in the

model. For example, the edge labelled ACTED_IN means that the initial vertex of the edge represents an

actor that acted in a movie, which is represented by the terminal vertex of the edge. Finally, rectangular

boxes represent attributes attached to vertices and edges, enriching the model with additional informa-

2.3. Property Graph 9

tion. Depending on the application, this information might be absolutely necessary to uniquely link the

vertex/edge to its real-world meaning (e.g. movie or actor name), or nice-to-have extra information,

which could otherwise be looked up elsewhere (e.g. movie year or actor role). The attributes consist

of an attribute name (key) and its value, separated by a colon in the figure.

name: "Pulp Fiction"
year: 1994
type: "movie"
genres: "Drama", "Thriller"

DIR
ECTE

D

name: "Quentin Tarantino"
type: "person"
occupation: "Actor", "Director"

ACTED_AS

name: "Samuel L. Jackson"
type: "person"
occupation: "Actor"

ACTED_AS

name: "Jules Winnfield"
type: "role"

name: "Jimmie Dimmick"
type: "role"

CH
AR

AC
TE

R_
IN

CHARACTER_IN

Figure 2.2: Alternative Movie Database Domain Model

Modelling Options As in the relational data model, there is no single correct way of modelling a

certain domain in a property graph. To illustrate the point, consider the graph presented in Figure 2.2.

It captures exactly the same information as the graph presented above in Figure 2.1, with different

choices on how to model certain aspects of the domain. For instance, movie genres are modelled as

attributes on movie vertices, whilst names of movie characters are vertices instead of edge attributes.

When modelling data for a graph database, the choices made depend on a number of different factors,

comprehensive survey of which is beyond the scope of this discussion. One, perhaps the most important

consideration, however, is what kinds of queries will be executed against the data.

Querying a Property Graph The most natural property graph query consists of finding a starting

vertex and exploring the graph by traversing selected edges and the vertices they connect, discovering

interesting information along the way until a terminating condition is met. The actual algorithm used

10 Chapter 2. Background

for the traversal, for example breadth-first or depth-first search, depends on the goal of the query and

can be decided by the developer or, perhaps, a built-in query planner. When using a database that

stores data natively as graphs, the performance of such a local query is independent of the size of the

remaining (unexplored) part of the graph. In contrast, all but the most trivial graph queries would

require the use of a join operator in a relational database, the performance of which degrades with

increasing data size (shown, for example, by Ordonez and García-García [18]).

Example Query Let us present an example of a typical graph query on the movie database from

Figure 2.1. The purpose of the query is to find genres of all the movies an actor has acted in. Such

a query would be created as a traversal of all outgoing edges with labels ACTED_IN or IS_OF_GENRE,

starting from the actor vertex. All vertices reached by the traversal, such that the traversed path length

from the starting vertex to the reached vertex is equal to 2, would correspond to individual elements in

the result set of the query. Figure 2.3 illustrates such a query for Samuel L. Jackson. The path traversed

is shown by a dashed red line and the vertices forming the result set by a solid red line. Note that the

total number of movies in the database, which Samuel L. Jackson has not acted in, should not have any

performance implications, as these vertices would not be visited by the traversal.

name: "Drama"
type: "genre"

name: "Triller"
type: "genre"

name: "Pulp Fiction"
year: 1994
type: "movie"

DIRECTED

IS_OF_GENRE

name: "Quentin Tarantino"
type: "person"

name: "Director"
type: "occupation"

name: "Actor"
type: "occupation"

IS_OF_GENRE

ACTED_IN

name: "Samuel L. Jackson"
type: "person"

IS_A

IS
_A

IS
_A

ACTED_IN

role: "Jules Winnfield"

role: "Jimmie Dimmick"

Figure 2.3: Example Graph Database Query

2.4. Neo4j 11

2.4 Neo4j

Neo4j is an open-source graph database running on the Java Virtual Machine (JVM) that processes and

stores data natively as property graphs. Like many NoSQL databases, it is schema-free. This means

that, unlike in relational databases, data does not have to adhere to any pre-defined structure. Nodes,

relationships, and properties can be created completely arbitrarily, with the exception that relationships

must have a start node and an end node at all times, which is enforced by the database.

HDD

Record Files

Transaction
Log

Operating System

JVM

Neo4j

Object Cache

Core API

Other APIs

Transaction
Management

File System Cache

No
de

s

Re
la

tio
ns

hi
ps

Pr
op

er
tie

s

Re
la

tio
ns

hi
p

Ty
pe

s

Figure 2.4: Neo4j High-Level Architecture

Architecture Figure 2.4 shows the high-level architecture of Neo4j. On top of the core Java API, a

number of other APIs for graph data storage and manipulation are provided, including a REST API

and other JVM language bindings. Through the object cache, which holds materialised portions of the

dataset as Java objects, and the file system cache, which caches parts of the filesystem to speed-up

I/O operations, data is persisted to and read from hard disk(s). As an orthogonal concern, transaction

management, discussed shortly, is provided. Data is physically stored in a number of separate record

files, four of which are also depicted in Figure 2.4. Three of these files are shown in detail in Figure

2.52.

2(both figures inspired by Robinson et al. [21] and modified for purposes of this report, additional details obtained by
inspecting the Neo4j codebase)

12 Chapter 2. Background

Node Store Nodes are stored as fixed-size 9-byte records, allowing speedy lookup by ID, by calculat-

ing the offset in the node store. Each node record consists of a single bit flag (irrelevant for this report),

a 35-bit pointer to the relationship store (ID of the first relationship of the node), and a 36-bit pointer

to the property store (ID of the first property of the node).

Relationship Store Similarly, relationships are stored as fixed-size 33-byte records with pointers to

the start and end nodes in the node store, a relationship type pointer, next and previous relationships

for both nodes, and the first property of the relationship.

Property Store Properties in Neo4j are key-value pairs, where keys are Java strings and values can

be of any Java primitive type, an array of primitives, a string, or an array of strings. Properties for

both nodes and relationships are 41-byte records in the property store: 36-bit pointers to the next and

previous property records of the property container, and up to four 8-byte property blocks. Figure 2.5

also shows the details of the second property block. 4 bits, denoted “t", are used as a pointer to the

relationship type store and identify the type of the relationship. 3 bytes, denoted “k", are used to look

up the property key in a store that links key IDs to their string representations (not depicted). The

value of the property is stored either in the same block, denoted “v", if it is up to 4 bytes in size, in the

remaining property blocks, if it is up to 24 bytes in size, or in a separate store with dynamic size (not

depicted), if larger. In the last case, the 4 bytes denoted “v" serve as a pointer to the dynamic store and

the remaining property blocks can be used for other properties.

Node Record in the Node Store (9 bytes), first bit = inUse flag

Property Record in the Property Store (41 bytes)

Relationship Record in the Relationship Store (33 bytes), first bit = inUse flag, second bit unused

property block 3property block 1
(8 bytes)

next
relationship

(35 bits)

next
property
(36 bits)

first node
(35 bits)

second node
(35 bits)

type
(16
bits)

first node's
previous

relationship
(35 bits)

first node's
next

relationship
(35 bits)

second
node's first
relationship

(35 bits)

second
node's next
relationship

(35 bits)

next property
(36 bits)

next
property
record

(36 bits)

previous
property
record

(36 bits)
v v v v k k kt property block 3

(8 bytes)
property block 4

(8 bytes)

Figure 2.5: Neo4j Data Storage

Index-Free Adjacency While this graph representation is not exactly the same as a traditional adja-

cency list, it allows for rapid graph traversals by merely following pointers, instead of having to look

them up in a global index. Robinson et al. [21] refer to this as index-free adjacency.

2.5. Online Analytical Processing 13

Transactions In order for a database to be reliable and remain in a consistent state in the presence

of concurrency and software and hardware failures, database management systems should provide

support for transactions [9]. Neo4j not only provides this support, but, unlike many other NoSQL

databases, requires that every mutating operation be run in the context of a transaction. Thus, logical

units of work are guaranteed to be atomic, consistent, isolated, and durable (ACID). Atomic operations

either happen entirely, or not at all. The database remains in a consistent state at all times; for example,

when a node is deleted but still has relationships, the database will reject such a mutation and rollback

the entire transaction, because it would cause the presence of an orphaned relationship were it to

commit. Changes performed by transactions that have not yet been committed are not visible to other,

concurrently running transactions. Finally, once a transaction is committed, the changes are persisted

permanently to a durable medium (hard disk).

Transaction Event API For this project, one important aspect of Neo4j transaction handling is pro-

grammatic access to the transaction lifecycle and the ability to inspect about-to-be-committed and

just-committed graph mutations.

2.5 Online Analytical Processing

OLTP The primary purpose of relational and, indeed, graph databases is typically online transactional

processing; that is, efficient execution of a large number of relatively simple transactions [9]. These

include create, read, update, and delete operations (CRUD).

OLTP in RDBMS In relational databases, all CRUD operations are typically specified using declarative

Structured Query Language (SQL), an implementation of relational algebra. Read queries are imple-

mented as searches in relations (tables) and result in “temporary” relations with projected attributes

and selected tuples. When multiple relations serve as input to a read query, a set-based operation called

join is typically involved. The presence of this operation is one of the distinguishing characteristics of

relational databases and it is often a performance bottleneck.

OLTP in GDBMS There is no single standard query language for graph databases. CRUD operations

are typically performed using a query language specific to the database (or multiple databases), or

using a RESTful or programming-language-specific API. In native graph databases, read queries are

implemented as traversals through the underlying property graph; they are local to a starting vertex or

a set of starting vertices. Read queries in graph databases typically result in either a set of vertices, a

14 Chapter 2. Background

set of edges, or a set of paths. That is to say, an OLTP read query in a graph database does not typically

result in an induced subgraph.

OLAP In contrast to OLTP, online analytical processing (OLAP) is the “dynamic synthesis, analysis,

and consolidation of large volumes of multi-dimensional data”[9]. It is hard to define a clear boundary

between what is still an OLTP operation and what is already OLAP, but OLAP typically involves multi-

dimensional view of aggregate data for the purpose of analysis. The distinction is even less obvious

when considering different data models. What might be a straightforward shallow breadth-first search

in a GDBMS (hence considered OLTP) could be a very expensive multi-join operation in RDBMS (thus

qualifying as OLAP). On the other hand, a simple sum on an attribute of all tuples in a single relation

might still be considered OLTP in RDBMS, but would be treated as OLAP in GDBMS, because it involves

a graph global query, for which the data model is not optimal.

OLAP in RDBMS Although primarily designed for OLTP, many RDBMSs have acquired OLAP capabil-

ities over the years. This is exemplified through the addition of OLAP-specific operators, such as CUBE

and ROLLUP, to the ANSI SQL standard [9]. Various benchmarks and metrics have been proposed, an

example of which is the APB-1 from the OLAP Council [9]. Multidimensional operations in RDBMS

OLAP typically involve roll-up, drill-down, slicing and dicing, and pivoting. For business reasons, there

is a clear trend towards real-time or near-real-time analytics [9].

OLAP in GDBMS Although graphs have been studied for substantially longer period of time than

RDBMSs have been around, today’s graph databases lack native OLAP support. In fact, it is a frequently

cited concern about graph database adoption3.

Structural Analytics Because of the explicit relationship modelling in graph data models, there is an

additional category of analytical processing, which we refer to as structural analytics. As opposed to

OLAP, which looks at aggregated data held by vertices and perhaps also edges, this kind of analytical

processing deals with qualitative and quantitative aspects of the actual structure of the graph/network.

2.6 Problem Definition

An analytical query, which requires inspecting many nodes and relationships, is not something native

graph databases are optimised for. Therefore, the time such queries take can be prohibitively long.

3source: on-line Q/A forums, author’s own consulting experience, conversations with industry professionals

2.6. Problem Definition 15

While local traversals can be executed in microseconds, finding the sum of a single property across

a million nodes in the graph can take between 400 milliseconds (entire graph in object cache) to 10

seconds (nothing in caches). Contrast that with MySQL, a relational database, in which the sum of a

single column in a table with one million rows takes about 250 milliseconds when data is read from

disk, i.e., 40 times less4.

Before we start considering analytical and graph-global queries, let us look at a simple problem, which

is in a way similar to the one described above: vertex degrees. Due to the layout of graph data on

disk, shown in Figure 2.5, a query asking to count all relationships of a given type and, perhaps, with

a specific property value, requires inspecting every single relationship. On a node with one million re-

lationships, this query exhibits similar performance characteristics to the one described in the previous

paragraph.

Yet counting the number of relationships for a node, optionally constrained by type, direction, and

properties, is a very useful and often needed operation, both in its own right and as a primitive building

block for other, more complex and even analytical queries. Consider, for example, a simple system that

allows users to rate movies, using a RATED relationship and a property called rating, ranging from 1

(hated it) to 5 (loved it). To see how popular a movie is, some or all of its RATED relationships have to

be tallied. This involves, as mentioned already, traversing all of the movie’s relationships.

In graph analytics, and especially social network analysis, a number of centrality measures has been

studied, where centrality is the relative importance of a vertex in a graph. The simplest one of these

measures is called degree centrality and is defined as the degree of a vertex [13], providing another

example why it might be useful.

Disregarding the option of computing approximate results for a moment, the only way to prevent

accessing large amounts of global graph data is pre-computing and/or localising the information. Since

the graph is being constantly mutated in an OLTP environment, this pre-computed and/or localised data

must be kept in sync with the actual data in the graph.

Another option would be employing probabilistic sampling, in order to arrive to an approximate result.

However, traversing random relationships from a vertex requires knowing, at the very least, how many

there are in total. As already explained, this requires inspecting every single one of them, which is

equivalent to finding the vertex degree.

Based on the discussion above, this project sets out to explore, whether it is possible to pre-compute and

localise interesting information in a constantly changing property graph in an OLTP graph database, to

prototype a solution, and to evaluate the performance thereof. It aims at using vertex degrees as an
4(measurements performed on a quad-core MacBook Air with 8 GB RAM and an SSD disk. These are for illustration only,

not comprehensive benchmarks)

16 Chapter 2. Background

example problem for its relative simplicity and wide applicability, but intends to generalise the results,

so that they are useful for other, more complicated, use cases, such as OLAP and structural analytics in

graph databases.

Chapter 3

Related Work

This chapter provides a brief chronological overview of the literature published on OLAP in graph

databases, which is relatively scarce, and on structural graph analytics.

3.1 OLAP in Graph Databases

3.1.1 SNAP and k-SNAP

Tian et al. [23] recognise the fact that most existing graph summarisation methods use simple statistics,

results of which can be difficult to interpret. They also emphasise the fact that many algorithms are

based purely on vertex connectivities, largely ignoring their attributes, which is also true for edges.

They talk about the need of OLAP-style operations, such as roll-up and drill-down, on user defined

attributes and edges.

The authors introduce and formally define two operations for graph summarisation, SNAP (Summarisa-

tion by Grouping Nodes on Attributes and Pairwise Relationships) and k-SNAP, both of which produce

a graph as a result. SNAP produces a summary graph through a homogeneous grouping of the input

graph’s nodes, based on user-selected attributes and relationships.

The SNAP operation groups nodes into completely homogeneous disjoint groups with respect to the

selected attributes and infers relationships between these groups, such that if there is an inferred rela-

tionship between two groups (in the resulting graph), each node in one group must have a relationship

of that type with at least one node in the second group (in the original graph). While such a relation-

ship inference is definitely useful for some use cases, it seems very restrictive. The authors do recognise

this fact in the sense that noisy or incomplete data would result in a large number of groups.

17

18 Chapter 3. Related Work

An alternative approach, k-SNAP, allows users to specify the number of resulting groups, relaxing the

homogeneity requirement for relationships by not requiring that every node participates in a group

relationship. k-SNAP is proven to be NP-complete in the same paper. An efficient algorithm is proposed

for the SNAP operation, as well as two heuristic methods for approximating k-SNAP results.

While SNAP and k-SNAP are interesting graph summarisation techniques, their applicability for OLAP-

style graph analytics is questionable. Their primary purpose is creating groups of nodes, based on the

(non)existence of relationships between those groups, using node attributes to constrain the group-

ing. Roll-up and drill-down is achieved by controlling the number of groups created. In traditional

OLAP, however, roll-up and drill-down is performed along data dimensions to achieve a coarser-grained

and finer-grained view, respectively. For example, one might want to see sales figures for the whole

company, drill-down into summaries for branches, departments, and so on. SNAP and k-SNAP do not

operate with this notion of data dimensions at all. Moreover, not much can be said about the groups

produced by these operations, apart from the (non)existence of specified relationship types amongst

them. No quantitative information is available about those relationships (how many there actually are,

how they are distributed across the nodes etc.).

3.1.2 Graph OLAP Framework

Chen et al. [7] recognise the need for OLAP-like operations on graph data sources and the fact that

existing OLAP technologies are not sufficient, since they do not consider explicit relationships between

data tuples.

The authors develop a theoretical graph OLAP framework, which presents a multi-dimensional and

multi-level view over graphs, where hierarchies can be associated with dimensions. One important

characteristic of their approach is that their starting point is not a single graph representing a do-

main; instead, they use a set of graphs representing collaboration patterns among authors working in

a given field, where each graph in the set is a snapshot of a collaboration network for a given year and

conference. In other words, their graphs have very limited dimensionality; the dimensions (such as

conference name and year) are represented as labels of entire graph snapshots. This model is signifi-

cantly different from a typical graph database model, where all dimensions would be captured within

a single graph. For instance authors, papers, conferences, and years could be modelled as nodes and

WRITTEN_BY (author), WRITTEN_IN (year), and WRITTEN_FOR (conference) as relationships.

Aggregation is achieved by overlaying the graph snapshots for particular dimension(s). As in the pre-

vious paper, the result of this aggregation is a graph. They apply aggregation functions, such as COUNT,

to relationships, but not to nodes.

3.1. OLAP in Graph Databases 19

As a further motivation, the authors present an example of finding a maximum flow between two

cities, connected by different means of transport with different transportation capacities (represented

as weights on relationships). While they present this problem as a case of OLAP, it would fall un-

der structural analytics in our categorisation. Assuming the lack of any further constraints, such as

maximum hop-count, this is an NP-hard problem and involves all the vertices and edges in the graph.

Another example is later presented, where the authors perform a roll-up-like operation on the author

collaboration network and compute an aggregated graph that represents author collaborations grouped

by institutions, again applying the COUNT operator on relationships.

As mentioned above, dimensions are represented by properties/labels of different graph snapshots,

which could be thought of as the actual graphs being just cells in a relational table. Perhaps due to this

modelling decision, the authors divide graph OLAP into informational OLAP (I-OLAP), i.e., aggregation

of graph snapshots across labels, and topological OLAP (T-OLAP), i.e., aggregation within the individual

graphs. The rest of their paper focuses on I-OLAP, while T-OLAP is examined by Qu et al. [19].

I-OLAP The authors go on to define an I-Aggregated graph as a graph computed from a set of network

snapshots, whose informational dimensions are of identical values, by applying an aggregation function

to node and relationship attributes. They require each snapshot to contain the same set of nodes,

which is a major limitation of this framework, because it will rarely be the case in any real-world

application. They also define a roll-up, drill-down, and slice/dice operation on the aggregated graph. As

in traditional RDBMS OLAP, they classify the aggregate measures into distributive, algebraic, and holistic,

depending on whether they need all the underlying data points (holistic), or whether an aggregated

measure (distributive) or a set thereof (algebraic) for a subset of the data is sufficient.

Following this division, the authors devise optimisations for efficient computation of aggregated mea-

sures based on pre-computed materialised views (for distributive and algebraic measures). They also

prove that for some measures, such as centrality, the computation is hard.

T-OLAP In a subsequent paper, Qu et al. [19] show efficient computation of T-OLAP based on two

characteristics of computed measures, distributiveness and monotonicity. Distributiveness allows them

to use pre-aggregated networks to compute even higher level summaries (roll-up), while monotonicity

helps pruning the search space when executing a query. For example, when looking for authors with a

minimum number of published papers, this number cannot be greater than the total number of papers

published by authors of the same institution combined. Thus, for instance, if an institution has 10

published papers and we’re looking for authors with at least 11, all authors belonging to the institution

can safely be ignored.

20 Chapter 3. Related Work

Similarly to our research, the authors investigate pre-computing information and materialising views

over data. However, they assume a static graph, and therefore do not consider the effects of graph

mutations that inevitably happen in an OLTP database. Moreover, as already mentioned, dimensions

are represented as graph snapshot labels, rather than nodes and relationships, as would be the case in

a graph database.

3.1.3 Graph Cube

In the last and latest work on this topic, Zhao et al. [26] also recognise the need for OLAP on graphs and

introduce the concept of a Graph Cube by combining characteristics of multi-dimensional graphs with

existing data cube technologies. The Graph Cube model is essentially a set of all possible aggregations

of the underlying multi-dimensional network.

The authors define two types of queries on a graph cube: a cuboid query, resulting in a specific aggrega-

tion of the multi-dimensional network, and a crossboid query (for cross-cuboid), which is a query with

more than one cuboid involved.

In terms of implementation, the authors identify three possibilities: full materialisation, no material-

isation, and partial materialisation, the first two (quite naturally) taking too much space and time,

respectively, in any but the most trivial networks.

Again, the paper does not consider the effects of a changing graph. Moreover, the model used is an

undirected graph and has neither labels nor properties on relationships. Finally, informational dimen-

sions are represented as attributes on nodes, while the option of representing them as relationships to

nodes is not investigated.

3.2 Structural Analytics

In contrast to OLAP, the topic of structural analytics on (mostly static) graphs has been well studied.

Many of the structural measures are very useful in the context of graph databases, too. For example,

finding a balanced minimum cut of a graph, which is known to be an NP-complete problem, could help

clustering a graph database across multiple machines.

3.2.1 Centrality

Due to the recent rise in the amount and popularity of social networking sites, measures for quantifying

a node’s importance, also known as centrality, within a network and efficient algorithms for exact or

3.2. Structural Analytics 21

approximate computation thereof have received increased attention. These, however, are applicable

to a wide range of other domains, including, for instance, route planning. The following paragraphs

briefly introduce a few of the many publications on this topic, in chronological order.

A good summary and a (re)introduction of 9 different centrality measures (primarily for social net-

works) is provided by Freeman [13]. Brandes [4] introduces a new algorithm for one type of central-

ity, called betweenness centrality, which runs in O(nm) and O(nm+ n2logn) time for unweighted and

weighted graphs, respectively - an improvement from O(n3), the fastest known algorithm until then.

White and Smyth [25] introduce algorithms for estimating relative importance in a graph, i.e., which

nodes are important with respect to a given set of nodes. Newman and Girvan [17] use betweenness

measures for community detection in graphs, achieved by iteratively removing edges with high be-

tweenness centrality. All the literature discussed thus far only considers shortest path between nodes

for computing centrality measures. Brandes and Fleischer [6] use a current-flow variant of closeness

centrality, which takes into account all paths between nodes, and proposes algorithms and approxima-

tion schemes for betweenness computations.

All papers in the last paragraph treat betweenness as a global graph property, i.e., most (and often all)

vertices have to be accessed to compute the measure. Everett and Borgatti [12] experiment with the

relationship between ego network betweenness (i.e., a local property) and betweenness of the node in

the entire network. They find that, while there is no formal connection, there is a high correlation in

many real-life and randomly generated graphs. Rattigan et al. [20] use structure indices of the network

to efficiently approximate betweenness and closeness centrality. The results are quite impressive: path

length between any two nodes can be estimated in constant time and betweenness centrality estimation

accesses less than 5% of the nodes explored by breadth-first search.

With adaptive random sampling, Bader et al. [2] approximate betweenness centrality using a reduced

number of single-source shortest path computations for nodes with high centrality and show that it

is an improvement over the algorithm presented by Brandes [4]. Geisberger et al. [15] propose an

approximation of betweenness centrality computed using only a single (“canonical”) shortest path.

Finally, Brandes [5] provides a concise review of different shortest-path betweenness centrality variants

and argues that they are all computable with simple variants of the same algorithm, introduced by

Brandes [4] himself.

3.2.2 Other Interesting Measures

The literature on centrality measures presented above is just a small sample of the research published

on that single topic. Furthermore, there are a number of other interesting measures on networks, such

22 Chapter 3. Related Work

as similarity between vertices, which have also been studied quite extensively. Many different research

projects could be devised for every one of these measures in the context of OLTP graph databases.

3.3 Summary

The first four papers presented above are the only publications on the topic of OLAP in graph databases.

There are problems that have not been addressed by any of the papers, which should be researched

before a real-world graph database (and specifically Neo4j) acquires OLAP capabilities.

First of those problems is the fact that the database is primarily OLTP. In other words, the OLAP frame-

work must be able to deal with a changing graph. Secondly, there are different ways of modelling the

same domain in a graph. Some users, for example, might choose to put a genre of a movie on movie

nodes as attributes, while others might create a node for each genre and connect movies to it by an

IS_OF_GENRE relationship, as illustrated in Figures 2.1 and 2.2. No attention has been paid to this

fact whatsoever. Finally, none of the research presented above deals with the property graph model,

which is richer (more complex) than any of the authors’ models. The consequences of directed, la-

belled, property-containing relationships between pairs of nodes (also with properties) have not been

investigated.

On the other hand, some of the research uses the notion of graph indices and/or pre-computed graph

measures to achieve the desired results. This is in line with the approach taken by this project.

Of the vast amount of research on centrality and other measures, only a small fraction deals with

dynamic graphs. An interesting opportunity for further research would, therefore, be the topic of

efficient computation of these measures in the presence of updates in the graph. More specifically,

it would be beneficial to find out, whether already pre-computed measures, cached values, and/or

indices, which are kept up to date in changing graphs, can be used for calculating these measures.

Such a research could build on top of this project, but is outside of scope for the moment.

Chapter 4

Theory

This project uses vertex degrees as an example analytical problem. More specifically, it asks the question

whether it is possible to pre-compute and localise some metadata about the graph, keep it up to date

whilst the graph is being mutated, and use it to efficiently answer inquiries about vertex degrees.

In this chapter, we first create a formal definition of the property graph model. We then formally define

vertex degree in a property graph and study it in detail. Finally, we develop a theoretical solution for

vertex degree caching with constant space and read time complexity.

When reading this chapter, it might be useful to refer to Appendix A, which provides a reference of all

symbols used throughout.

4.1 Basic Definitions

Let us begin with a few own definitions that are useful for the remainder of this chapter. Other defini-

tions are presented as needed.

As mentioned previously, a property graph is a directed graph with labelled edges. Loops are allowed

and there can be multiple edges between the same pair of vertices, even if they are identical in terms

of direction, label, and properties. Each property container (i.e., vertex or edge) can have an arbitrary

number of arbitrary key-value pairs called attributes. If an attribute with a specific key exists for a

property container, the value of such an attribute is defined. Otherwise, it is undefined. Formally,

Definition 4.1. A directed property graph with labelled edges is a set G = (V, E, init, ter, label, attrp),

such that (V ∩ E) = ;, init : E → V , ter : E → V , label : E → Λ, and attrp : C × A 7→ B, where the

elements of V are vertices or nodes of the graph G, the elements of E are its edges or relationships,

i.e., pairs (init(e), ter(e)), the elements of Λ are edge labels or types, C = (V ∪ E) is the set of property

23

24 Chapter 4. Theory

containers, the elements of A are attribute or property keys of property containers in C , the elements of

B are attribute or property values of property containers in C , init(e) is the start node or initial vertex

of e ∈ E, ter(e) is the end node or terminal vertex of e, and label(e) is the label of e. attrp is a partial

function on C × A, which maps a set {c,α} ∈ (C × A) to β ∈ B, if defined for c and α. Otherwise, it

is undefined (attrp(c,α) ↓). When there is no ambiguity, such a graph will be referred to as a property

graph or simply graph.

For convenience, we define a new function, this time a total one, for mapping property containers and

property keys to property values. To achieve that, we define a value that represents a non-existing

property. Formally,

Definition 4.2. attr is a total function on C × A, which maps each set {c,α} ∈ (C × A) to β ∈ (B ∪

{UNDEF}). attr(c,α) = UNDEF if and only if attrp(c,α) ↓. Otherwise, attr(c,α) = attrp(c,α).

The property set of a property container is the set of all properties (defined and undefined) on that

property container. Formally,

Definition 4.3. For a property container c ∈ C , the property set Π(c) is defined as Π(c) ⊆ (A× (B ∪

UNDEF)), such that ∀{α,β} ∈ Π(c),β = attr(c,α).

In a directed graph, we can talk about the direction of an edge with respect to an incident vertex. Such

a direction can either be OUT, or IN1. In the special case of a loop, we define the direction as LOOP.

Formally,

Definition 4.4. Direction δ is a partial map δ : (E × V) 7→ (∆ ∪ {LOOP}), where ∆ = {IN, OUT}. The

map is defined as δ(e ∈ E, v ∈ e) = OUT if and only if (init(e) = v) ∧ (ter(e) 6= v), δ(e, v) = IN if

and only if (ter(e) = v) ∧ (init(e) 6= v), and δ(e, v) = LOOP if and only if (init(e) = v) ∧ (ter(e) = v).

Otherwise, δ(e, v) ↓ (i.e., in all other cases, e not an edge at v, so the function is undefined).

4.2 Vertex Degrees in Property Graphs

One of the goals of the project is to come up with a way to localise information about vertex degrees

and keep them up to date, so that they can be determined quickly without the need to inspect every

single edge at a vertex. First, however, we must take a deeper look at what vertex degrees actually

mean in a property graph.

1We use OUT and IN for brevity in this chapter. Neo4j uses OUTGOING and INCOMING, respectively.

4.2. Vertex Degrees in Property Graphs 25

Example 4.5. Consider the graph shown in Figure 4.1, a modified version of the graph from Figure 2.1,

which now also captures how people rated different movies. These ratings are expressed through RATED

relationships with a rating property, taking on values from 1 (hated it) to 5 (loved it), and a timestamp

in milliseconds since 1/1/1970, representing when the rating was created. The total outdegree of the

vertex representing Pulp Fiction is now 2 and indegree is 6, but that information is of little semantic

use.

name: "Drama"
type: "genre"

name: "Triller"
type: "genre"

name: "Pulp Fiction"
year: 1994
type: "movie"

DIRECTED

IS_OF_GENRE

name: "Quentin Tarantino"
type: "person"

name: "Director"
type: "occupation"

name: "Actor"
type: "occupation"

IS_OF_GENRE

ACTED_IN

name: "Samuel L. Jackson"
type: "person"

IS_A

IS
_A

IS
_A

ACTED_IN

role: "Jules Winnfield"
role: "Jimmie Dimmick"

name: "Michal Bachman"
type: "person"

RATED

rat
ing

: 5
tim

es
tam

p:
13

76
43

39
67

67
5

name: "Peter Smith"
type: "person"

RATED

name: "Mary Mace"
type: "person"

RATED

rating: 3

tim
estamp: 13764339899203

rating: 2
timestamp: 13764339801334

Figure 4.1: Movie Database with User Ratings

Property graph edge labels typically represent informational dimensions. As apparent from Figure 4.1,

Pulp Fiction’s incoming relationships of type ACTED_IN convey a completely different information from

incoming relationships of type RATED. Thus, in order for the in/outdegree to have any informational

value, it needs to be measured with respect to a relationship type.

Asking for the indegree of a movie with respect to relationships of type RATED can tell us, how many

times the movie has been rated. However, it says nothing about how popular the movie is. Asking for

the number of RATED relationships with the rating property greater than 3, on the other hand, can tell

us how many people actually liked the movie.

26 Chapter 4. Theory

4.2.1 Properties Description

Therefore, in order to gain useful insight by counting the number of edges at a vertex, we must specify

the direction, type, and (optionally) properties to be taken into account when counting. Let us start

with the properties and call their specification the properties description. Formally,

Definition 4.6. A properties description φ is map φ : A→ Γ, assigning every property key α ∈ A a value

γ ∈ Γ, where each element of Γ, also called a property constraint, is a predicate on β = attr(c,α), i.e.,

the value of property with key α on property container c, such that γ(β) → {true, false}. A predicate

indicating that the value of the property can take on any value, denoted ?, is formally defined as

∀β , ?(β) = true. Sometimes, we refer to ? as “wildcard”.

Example 4.7. Using the movie graph from Figure 4.1 again, if we were to attempt counting a movie

node’s incoming relationships of type RATED with property rating grater than 3 and property timestamp

smaller than 1376433967675, we could construct a properties description φ1 as follows (ignoring any

node properties in the model for brevity):

φ1 = {rating→ (β > 3), timestamp→ (β < 1376433967675), role→ ?}.

If we were to construct a properties description for a relationship that does not have the timestamp

property, we could do so by defining

φ2 = {rating→ (β > 3), timestamp→ (β = UNDEF), role→ ?}.

We say that a property container matches a properties description if every property constraint in the

properties description is satisfied by the properties of the property container. A property constraint for

a property is satisfied, if the predicate (constraint) assigned to the property key returns true for the

property value on the property container. Formally,

Definition 4.8. Property container c matches properties description φ, denoted as matches(c,φ), if and

only if (∀α ∈ A,γ(β) = true), where γ= φ(α) and β = attr(c,α).

Example 4.9. Let the set of all property keys be A = {rating, timestamp, role}. Let c be a prop-

erty container with a single property rating set to 2. Let φ be a properties description, defined as

φ = {rating→ (β < 3), timestamp→ (β = UNDEF), role→ ?}. Then:

α1 = rating,

γ1 = φ(α1) = φ(rating) = (β1 < 3),

β1 = attr(c,α1) = attr(c, rating) = 2,

γ1(β1) = γ1(2) = (2< 3) = true.

4.2. Vertex Degrees in Property Graphs 27

α2 = timestamp,

γ2 = φ(α2) = φ(timestamp) = (β2 = UNDEF),

β2 = attr(c,α2) = attr(c, timestamp) = UNDEF,

γ2(β2) = γ2(UNDEF) = (UNDEF = UNDEF) = true.

α3 = role,

γ3 = φ(α3) = φ(role) = ?= true (by definition).

Since (∀α ∈ A,γ(β) = true), we can say that matches(c,φ), i.e., property container c matches properties

description φ.

4.2.2 Relationship Description

Now that we have defined properties description, we can use it as a building block for defining a

relationship description.

Definition 4.10. A relationship description ψ is a set ψ = (δψ,λψ,φ), where δψ ∈ ∆ is a direction,

λψ ∈ Λ is a relationship type, and φ is a properties description.

Example 4.11. Using the movie graph from Figure 4.1 once again, if we were to attempt count-

ing a movie node’s incoming relationships of type RATED with property rating grater than 3 and

property timestamp smaller than 1376433967675, we could construct a description ψ1 as follows:

ψ1 = (IN, RATED, {rating → (β > 3), timestamp → (β < 1376433967675), role → ?}). If we were to

construct a description of a relationship that does not have the timestamp property, we could do so by

defining ψ2 = (IN, RATED, {rating→ (β > 3), timestamp→ (β = UNDEF), role→ ?}).

We now define what it means that a relationship matches a relationship description. Informally, a node’s

relationship matches a relationship description if their types are equal, their directions match, and the

relationship’s properties match the properties description on the relationship description. Directions

match if they are equal (the relationship’s direction is determined with respect to a node), or if the

direction of the relationship is LOOP. Formally,

Definition 4.12. Direction δ(e, v) ∈ (∆ ∪ {LOOP}) of a relationship e at node v matches a direction

δψ ∈∆, denoted as matches(δ(e, v),δψ), if and only if (δ(e, v) = δψ)∨ (δ(e, v) = LOOP).

Definition 4.13. Relationship e at node v matches a description ψ= (δψ,λψ,φ), denoted as

matches(e,ψ, v), if and only if (λψ = label(e))∧matches(δ(e, v),δψ)∧matches(e,φ).

28 Chapter 4. Theory

Example 4.14. Let the set of all property keys be A = {rating, timestamp, role}. Let e be an outgoing

relationship of type RATED at node v with a single property rating set to 2. Let ψ be a relationship

description, defined as ψ = (IN, RATED, {rating → (β < 3), timestamp → (β = UNDEF), role → ?}).

Then:

φ = {rating→ (β < 3), timestamp→ (β = UNDEF), role→ ?}, and matches(e,φ) (Example 4.9),

λψ = RATED, label(e) = RATED, thus λψ = label(e),

δψ = IN, δ(e, v) = OUT, thus ¬matches(δ(e, v),δψ).

Since ¬matches(δ(e, v),δψ), we can say that ¬matches(e,ψ, v), i.e., relationship e at node v does not

match relationship description ψ.

4.2.3 Vertex Degree

Finally, we define the degree of a node v in a property graph as

Definition 4.15. The vertex degree d(v,ψ) of node v with respect to relationship description ψ is the

number d(v,ψ) = |E(v)| of relationships at v such that ∀e ∈ E(v), matches(e,ψ, v).

A note on loops is in order. We have only defined indegrees and outdegrees, but no such thing as

“loopdegrees". This is because loops are a rare special case in real-life graph models. Since the property

graph model used by Neo4j allows loops, we must not ignore them. As described later in Section 4.4,

we indeed do account for them to the extent that they add one to the outdegree and one to the

indegree of the vertex with the loop, as already mentioned in Section 2.2. However, since LOOP is not

a valid direction in relationship descriptions, no capability is provided for counting loops only, which is

consistent with the non-existence of “loopdegree" of a vertex.

4.3 General-to-Specific Ordering

4.3.1 Properties Description Ordering

Next, we define general-to-specific ordering of properties descriptions, inspired by Mitchell [16]. Given

properties descriptions φ and φ′, φ is more general or equal to φ′ if an only if any property container

that matches φ′ also matches φ. Formally,

Definition 4.16. For any two properties descriptions φ and φ′, φ is more general than or equal to φ′,

written as φ ≥g φ
′, if and only if ∀e ∈ E, matches(e,φ′)→ matches(e,φ). φ is (strictly) more general

4.3. General-to-Specific Ordering 29

than φ′, written as φ >g φ
′, if and only if (φ ≥g φ

′) ∧ (φ 6= φ′). Finally, φ′ is (strictly) more specific

than φ if and only if φ >g φ
′.

The ≥g relation is reflexive, anti-symmetric, and transitive, and defines a partial order over any set Φ

of properties descriptions, forming a lattice, example of which is shown in Figure 4.2. The example

assumes only 2 property keys in A, i.e., A = {rating, timestamp}. As proven below, the most specific

properties descriptions φmaxs are those with all constraints in the form of (β = x), where x can be any

value (integer, string, etc.), or UNDEF. The most general properties description φmaxg is one where all

property constraints are wildcards, i.e., ∀α ∈ A,φ(α)→ ?, since any property container matches that

description.

{rating → (β = 2),
timestamp → (β = UNDEF)}

{rating → ?,
timestamp → (β = UNDEF)}

{rating → ?, timestamp → ?}

{rating → (β = 1),
timestamp → (β = UNDEF)}...

{rating → (β = 1),
timestamp → ?}

{rating → (β = 2),
timestamp → ?}

...

... ...

Figure 4.2: Part of a Lattice of Properties Descriptions

If we allow any predicates to act as property constraints, the set Φ′ of all properties descriptions more

general than a given properties description φ is infinite. This is illustrated by the grey boxes in Figure

4.2 and in a more detail in Figure 4.3. Formally,

Theorem 4.17. ∃{φ,Φ′} such that ∀φ′ ∈ Φ′, (φ′ ≥g φ)∧ (|Φ′|=∞).

Proof. We prove by induction. Let γ be a property constraint, assigned by φ to a property key α,

i.e., γ = φ(α). Let γ take the form of γ(e,α) = (β < x), where β = attr(e,α) and x ∈ R. Let

γ′(e,α) = (β < x ′), where x ′ > x . If φ′ is obtained by replacing γ with γ′ in φ, then φ′ ≥g φ, since

x ′ > x > β . There are infinitely many x ′ ∈ R, such that x ′ > x . Thus, there are infinitely many

obtainable γ′ and, consequently, φ′, making |Φ′|=∞.

A few theorems related to maximally specific and maximally general properties descriptions are now

presented and proven.

30 Chapter 4. Theory

{rating → ?, timestamp → ?}

{rating → (β = 1),
timestamp → ?}

...

{rating → (β > 2),
timestamp → ?}

{rating → (β > 3),
timestamp → ?}

{rating → (β < 2),
timestamp → ?}

{rating → (β > 0),
timestamp → ?}

{rating → (β = 2),
timestamp → ?}

{rating → (β > 1),
timestamp → ?}

{rating → (β < 1),
timestamp → ?}

{rating → (β < 3),
timestamp → ?}

{rating → (β < 0),
timestamp → ?}

...

... ...

Figure 4.3: Detailed View on Part of an Infinite Lattice of Properties Descriptions

Theorem 4.18. For each property container c ∈ C, there is exactly one maximally specific matching

properties description φmaxs(c). Formally, ∀c ∈ C ,∃φmaxs(c), such that matches(c,φmaxs(c)) and ∀φ 6=

φmaxs(c), such that matches(c,φ), φ >g φmaxs(c).

Proof. We proof by construction. Let φmaxs(c) for a property container c be constructed as ∀α ∈ A,

φmaxs(c,α) → γ, where γ(β) = (β = attr(c,α)). First, note that matches(c,φmaxs(c)) by Definition

4.8. For any α ∈ A, the predicate γ(β) is only true for a single value of β , which is the value of

property α on property container c. To construct a φ from φmaxs(c) by replacing γ with γ′, there are

three options. First, (γ(β) = true)↔ (γ′(β) = true), but then γ = γ′ and φ = φmaxs(c). Second,

γ′(β) = true for fewer values of β than γ, but since γ(β) = true only for a single value of β , then

∀β γ′(β) = false, thus ¬matches(c,φ). Third, γ′(β) = true for more values of β than γ, but then

φ >g φmaxs(c). Thus ∀c ∈ C ,∃φmaxs(c), such that matches(c,φmaxs(c)) and ∀φ 6= φmaxs(c), such that

matches(c,φ), φ >g φmaxs(c).

Theorem 4.19. The most specific properties descriptions of two property containers are equal if and only

if the property sets of the property containers are equal. Formally, ∀c1, c2 ∈ C, (φmaxs(c1) = φmaxs(c2))↔

(Π(c1) = Π(c2)).

Proof. We prove directly. ∀c1, c2 ∈ C , φmaxs(c1) = φmaxs(c2) if and only if ∀α ∈ A, φmaxs(c1,α) =

φmaxs(c2,α), which is true if and only if ∀α ∈ A, attr(c1,α) = attr(c2,α) by construction of φmaxs from

previous proof. Finally, attr(c1,α) = attr(c2,α) ∀α ∈ A if and only if Π(c1) = Π(c2).

4.3. General-to-Specific Ordering 31

Theorem 4.20. A property container matches the most specific properties description of another container

if and only if their property sets are equal. Formally, ∀c1, c2 ∈ C, matches(c1,φmaxs(c2))↔ (Π(c1) =

Π(c2)).

Proof. We prove directly. ∀c1, c2 ∈ C , matches(c1,φmaxs(c2)) if and only if ∀α ∈ A, γ2(attr(c1,α)) = true,

where γ2 = φmaxs(c2,α). This is the case if and only if γ2 = (β = attr(c1,α)), which is true if and only

if attr(c2,α) = attr(c1,α), by construction of φmaxs from the proof of Theorem 4.18. Since ∀α ∈ A,

attr(c2,α) = attr(c1,α), then Π(c1) = Π(c2).

Theorem 4.21. The most general properties description is φmaxg, such that ∀α ∈ A,φmaxg(α)→ ?.

Proof. We prove directly. Any property container matches a properties description φmaxg, such that

∀α ∈ A,φmaxg(α)→ ?, by definition of ?. Since for any c ∈ C , true→matches(c,φmaxg), ∀φ ∈ Φ, where

Φ is the set of all properties descriptions, matches(c,φ)→matches(c,φmaxg), thus φ ≤g φmaxg.

Finally, we define mutually exclusive properties descriptions, informally as such properties descriptions

that have no chance of matching a single property container at the same time. Another way to put this

is that they do not have a common descendant in the lattice of property descriptions. Formally,

Definition 4.22. Properties descriptions φ1 and φ2 are mutually exclusive, denoted as mutex(φ1,φ2),

if and only if 6 ∃c, such that matches(φ1, c)∧matches(φ2, c).

4.3.2 Relationship Description Ordering

We can now define similar general-to-specific ordering on relationship descriptions. Since each rela-

tionship description has a single relationship type and direction, the ordering depends purely on the

properties descriptions. Formally,

Definition 4.23. Relationship descriptionψ= (δψ,λψ,φ) is more general or equal to a relationship de-

scription ψ′ = (δ′ψ,λ′ψ,φ′), denoted as ψ ≥g ψ
′, if and only if ∀e ∈ E and ∀v ∈ e, matches(e,ψ′, v)→

matches(e,ψ, v). Equivalently, ψ ≥g ψ
′, if and only if (λψ = λ′ψ) ∧ (δψ = δ

′
ψ) ∧ (φ ≥g φ

′) (from

Definitions 4.13 and 4.16). Again, ψ is (strictly) more general than ψ′, written as ψ>g ψ
′, if and only

if (ψ≥g ψ
′)∧ (ψ 6=ψ′). Finally, ψ′ is (strictly) more specific than ψ if and only if ψ>g ψ

′.

Under the condition that constraints in properties descriptions are allowed to be arbitrary predicates,

the lattice formed by relationship description general-to-specific ordering is, again, infinite, since it is

based on the lattice formed by properties descriptions, proven above to be infinite. We now present a

few useful theorems for relationship descriptions, which are directly related to the theorems proven for

properties descriptions.

32 Chapter 4. Theory

Theorem 4.24. For each relationship e at a node v ∈ V , which is not a loop, there is exactly one maximally

specific matching relationship description of the form ψmaxs(e, v) = (δψ,λψ,φ) =

= (δ(e, v), label(e),φmaxs(e)).

Proof. We prove directly. From Definition 4.13, matches(e,ψ, v) if and only if δψ = δ(e, v) (for non-

loop edges), λψ = label(e), and matches(φ, e). From Theorem 4.18 and proof thereof, the most specific

φ such that matches(φ, e), is φmaxs(e). Thus, ψmaxs(e, v) = (δ(e, v), label(e),φmaxs(e)).

Theorem 4.25. For each relationship e at a node v ∈ V , which is a loop, there are exactly two maxi-

mally specific matching relationship descriptions of the forms ψmaxs1(e, v) = (IN, label(e),φmaxs(e)) and

ψmaxs2(e, v) = (OUT, label(e),φmaxs(e)).

Proof. We prove directly. From Definition 4.13, matches(e,ψ, v) if and only if matches(δψ,δ(e, v)),

λψ = label(e), and matches(φ, e). From Theorem 4.18 and proof thereof, the most specific φ such that

matches(φ, e), is φmaxs(e). From Definition 4.12, ∀δ ∈ ∆, matches(δ, LOOP). Since ∆ = {IN, OUT},

there are exactly two maximally specific matching relationship descriptions of the forms ψmaxs1(e, v) =

(IN, label(e),φmaxs(e)) and ψmaxs2(e, v) = (OUT, label(e),φmaxs(e)).

From this point onward, as a consequence of this result and in the interest of simplicity, each relation-

ship which is a loop is treated as two different relationships, one incoming and the other one outgoing.

Theorem 4.26. The most specific relationship descriptions of two relationships at the same node are equal

if and only if the directions, labels, and property sets of the relationships are equal. Formally, ∀e1, e2 ∈

E(v), (ψmaxs(e1, v) =ψmaxs(e2, v))↔ ((δ(e1, v) = δ(e2, v))∧(label(e1) = label(e2))∧(Π(e1) = Π(e2))).

Proof. We prove directly.

(ψmaxs(e1, v) =ψmaxs(e2, v))↔ ((δ(e1, v) = δ(e2, v))∧ (label(e1) = label(e2))∧ (Π(e1) = Π(e2)))

((δ(e1, v), label(e1),φmaxs(e1)) = (δ(e2, v), label(e2),φmaxs(e2)))↔ ((δ(e1, v) = δ(e2, v))∧ (label(e1) =

label(e2))∧ (Π(e1) = Π(e2))) (from Theorem 4.24)

((δ(e1, v) = δ(e2, v)) ∧ (label(e1) = label(e2)) ∧ (φmaxs(e1) = φmaxs(e2)))↔ ((δ(e1, v) = δ(e2, v)) ∧

(label(e1) = label(e2))∧ (Π(e1) = Π(e2))) (logical re-arrangement)

(φmaxs(e1) = φmaxs(e2))↔ (Π(e1) = Π(e2)), which is true (from Theorem 4.19)

Theorem 4.27. A relationship matches the most specific relationship description of another relationship if

and only if their directions, labels, and property sets are equal. Formally,

∀e1, e2 ∈ E(v), matches(e1,ψmaxs(e2, v), v) ↔ ((δ(e1) = δ(e2)) ∧ (label(e1) = label(e2)) ∧ (Π(e1) =

Π(e2))).

4.4. Naive Caching 33

Proof. We prove directly.

matches(e1,ψmaxs(e2, v), v)↔ ((δ(e1) = δ(e2))∧ (label(e1) = label(e2))∧ (Π(e1) = Π(e2))).

((δ(e1) = δ(e2)) ∧ (label(e1) = label(e2)) ∧matches(e1,φmaxs(e2)))↔ ((δ(e1) = δ(e2)) ∧ (label(e1) =

label(e2))∧ (Π(e1) = Π(e2))).

Since matches(e1,φmaxs(e2))↔ (Π(e1) = Π(e2)) (from Theorem 4.20),

((δ(e1) = δ(e2)) ∧ (label(e1) = label(e2)) ∧ (Π(e1) = Π(e2))) ↔ ((δ(e1) = δ(e2)) ∧ (label(e1) =

label(e2))∧ (Π(e1) = Π(e2))).

Finally, we define mutually exclusive relationship descriptions, informally as such relationship descrip-

tions that have no chance of matching a single relationships at the same time. Another way to put this

is that they do not have a common descendant in the lattice of relationship descriptions. Formally,

Definition 4.28. Relationship descriptions ψ1 = (δψ1,λψ1,φ1) and ψ2 = (δψ2,λψ2,φ2) are mutually

exclusive, denoted as mutex(ψ1,ψ2), if and only if 6 ∃e, such that matches(ψ1, e) ∧matches(ψ2, e). It

follows directly from Definitions 4.13 and 4.22 that mutex(ψ1,ψ2)↔ ((δψ1 6= δψ2)∨ (λψ1 6= λψ2)∨

(mutex(φ1,φ2))).

4.4 Naive Caching

It should now be possible to determine the number of relationships at a node by creating a relation-

ship description, inspecting every single relationship at the node, and counting those that match the

description. As mentioned before, however, this could be too costly. Instead, we would like to cache

that information, so it can be found faster. One way of caching such information would be creating

the most specific description of the relationship and storing the number of relationships matching that

description for each node.

Definition 4.29. K(v) is a set, called the degree cache of vertex v. Each element k ∈ K(v) of this

set, called a cached degree, is a tuple (ψ ∈ Ψ, n ∈ N), where Ψ is the set of all possible relationship

descriptions and N is the set of all natural numbers2. For a vertex with no edges, the cache is empty,

i.e., |K(v)|= 0.

Creating Relationships When a relationship e is created3 at node v, a cached degree k ∈ K(v) is

found such that matches(e,ψ ∈ k, v). The cached degree k = (ψ, n) is removed from K(v) and replaced
2defined as any positive integer and 0
3as mentioned previously, a relationship that is a loop is now treated as two different relationships, one outgoing, the

other one incoming

34 Chapter 4. Theory

by k′ = (ψ, n+ 1). In other words, the cached degree is incremented by 1. If no such k exists in K(v),

the most specific description ψmaxs(e, v) is created for e, and k = (ψmaxs(e, v), 1) is inserted into K(v).

By inserting elements into the cache this way, we claim two statements to be true.

Theorem 4.30. There are no two elements k1 ∈ K(v) and k2 ∈ K(v), such that ψ1 ∈ k1 =ψ2 ∈ k2.

Proof. We prove by contradiction. Assume that to cache K(v) for vertex v, already containing cached

degree k1, a second element k2 such that ψ2 ∈ k2 = ψ1 ∈ k1, has been inserted. Then ψ2 must be

the most specific relationship description for some relationship e2 ∈ v, i.e., ψ2 = ψmaxs(e2). When

ψ1 =ψ2, then it must be the case that matches(e2,ψ1, v). Then n1 ∈ k1 would have been incremented

by 1 instead of k2 being inserted, which contradicts the assumption.

Theorem 4.31. There is always at most 1 cached degree k ∈ K(v) for any e ∈ E(v), such that

matches(e,ψ ∈ k, v).

Proof. We prove by contradiction. Let cache K(v) for vertex v contain two elements k1, k2 ∈ K(v).

Let ψ1 be the most specific relationship description of some relationship e1 ∈ v, such that ψ1 ∈

k1 = ψmaxs(e1, v). Similarly, let ψ2 be the most specific relationship description of some relation-

ship e2 ∈ v, such that ψ2 ∈ k2 =ψmaxs(e2, v). Now assume that ∃e3 ∈ v, such that matches(e3,ψ1, v)∧

matches(e3,ψ2, v). Using Theorem 4.27, this means that (δ(e3, v) = δ(e1, v) = δ(e2, v))∧ (label(e3) =

label(e1) = label(e2))∧ (Π(e3) = Π(e1) = Π(e2)). Then, by construction of maximally specific relation-

ship description from Theorem 4.24, ψ1 =ψ2. This is a contradiction to Theorem 4.30.

Deleting Relationships When a relationship is deleted at node v, a cached degree k ∈ K(v) is found

such that matches(e,ψ ∈ k, v). The cached degree k = (ψ, n) is removed from K(v) and replaced

by k′ = (ψ, n − 1), if n > 1 (otherwise it is just removed). In other words, the cached degree is

decremented by 1 or removed when already equal to 1. k must exist, since it was created when the

first relationship with description ψmaxs(e, v) was created and incremented every time thereafter, when

another relationship with the same description was created.

Changing Relationships Finally, when a relationship is changed, the same operations take place as if

the old version of the relationship was deleted and the new version created. This way, the degree cache

is up to date at all times, holding the correct vertex degrees.

Querying Cache To determine the degree of a vertex v, one would first construct a relationship

description ψquery of the relationships to count. The degree of vertex v with respect to description

4.5. Constant Space Complexity Caching 35

ψquery is then the sum of the values of all cached degrees in cache K(v), such that the relationship

description of the cached degree is more specific or equal to ψquery. Formally,

Theorem 4.32. The degree of a vertex v ∈ V with respect to relationship description ψquery is

d(v,ψquery) =
∑

k∈K(v),s.t.ψquery≥gψ∈k
n ∈ k.

Proof. We prove directly. By Definition 4.23 and Theorem 4.24, matches(e,ψ, v)↔ (ψ≥g ψmaxs(e, v)),

where e is an edge at vertex v. Given the construction of cache K(v), i.e., the fact that cached relation-

ship counts are up to date with actual counts, the definition of vertex degree from Definition 4.15 is

equivalent to the vertex degree definition from Theorem 4.32 above.

Space Complexity There is an apparent problem with this approach to caching. In the worst case,

when a property for each relationship takes on a different value (as in the case of timestamps, for

instance), the space complexity of this caching is O(||G||), i.e., linearly proportional to the number of

edges in the graph. This clearly defeats its very purpose, because we already have such a cache in the

graph, the vertices themselves.

4.5 Constant Space Complexity Caching

Whilst the number of property values β ∈ B for a property key α ∈ A can theoretically be of order

O(||G||), as mentioned above, the number of relationship types |Λ| in any real-life graph is not typically

greater than 10 or 20. This is because the types represent real kinds of relationships between entities,

such as is in, is of type, likes, follows, and so on. A graph model with hundreds or thousands of

relationship types would be incomprehensible and, consequently, of little value, since the purpose of

these types is semantic meaning for humans. Moreover, in a system that uses a graph database, the

relationship types are typically decided by designers of the system, rather than derived from user input.

Thus, the number of relationship types in the graph can usually be approximated reasonably accurately

up front.

4.5.1 Cache Compaction

We propose a relationship description generalisation operation, a compaction threshold τ, and a cache

compaction operation, which results in |K(v)| ≤ τ, effectively bringing the space complexity of the

degree cache to O(1).

36 Chapter 4. Theory

The idea behind decreasing the space requirement for the degree cache is storing the number of rela-

tionships at a vertex using a more general relationship description than their most specific one. From

Theorem 4.17 and subsequent discussion, we know that the number of relationship descriptions more

general than a given relationship description is infinite. Bearing in mind that “value is greater than 3” is

as valid a property constraint as “value starts and ends with a capital letter" (for a string-typed value),

picking a reasonable generalisation would be very hard without imposing any limitations.

We propose the following limited generalisation operation, which produces a more general relationship

description of a given relationship description by replacing one of its property constraints, not already

equal to ?, by ?. Formally,

Definition 4.33. Generalisation of a relationship description ψ = (δψ,λψ,φ) produces a relationship

description ψ′ = (δψ,λψ,φ′), such that φ′(α?) = ? and ∀α ∈ (A\ {α?}), φ′(α) = φ(α), where φ(α? ∈

A) 6= ?. Such an operation is written as ψ′ = gen(ψ). The most general relationship description of

relationship e at node v is ψmaxg(e, v) = (δ(e, v), label(e),φmaxg(e)) and since ∀α ∈ A, φmaxg(e,α) = ?,

gen(ψmaxg(e, v)) = ;. That is to say, the most general relationship description cannot be generalised

any further.

The generalisation set of a relationship description is the set of all more or equally general relationship

descriptions, recursively produced by the generalisation operation defined above. Formally,

Definition 4.34. The set Ψg(ψ), called generalisation set of relationship description ψ, is the set of all

ψg , such that ∀ψg ∈Ψg(ψ), ψg = gen(ψ′g ∈ ({ψ} ∪Ψg(ψ))).

Since the number of property constraints that can be replaced by ? is bounded above by |A|, the set Ψg ,

partially ordered using the general-to-specific ordering, has a finite number of elements. An example

lattice, formed by such a set, is shown in Figure 4.4. A is assumed to be A= {rating, time, role}.

We further propose a compaction operation, which results in a reduction of the space requirement for the

degree cache of a vertex. In plain language, the operation works as follows. First, a generalisation set

for each cached degree’s relationship description is produced and all elements in all the generalisation

sets are inserted into a new set, called generalisation superset. The superset is then ordered, based

on some criteria discussed later, from best to worst generalisation. The first generalisation in such an

ordered superset, which is more general or equal to at least 2 cached degree relationship descriptions,

is then selected and a new cached degree is formed out of it. The value of the newly cached degree

is the sum of the cached degrees, whose relationship descriptions were more or equally specific to the

relationship description of the newly cached degree. These are then removed from the cache. The

pseudocode in Algorithm 4.1 illustrates the compaction operation on cache K(v) for vertex v.

4.5. Constant Space Complexity Caching 37

δ = IN, λ = RATED,
φ = {rating → (β = 1), time → (β = 1234), role → (β = UNDEF)}

δ = IN, λ = RATED,
φ = {rating → ?, time → (β = 1234), role → (β = UNDEF)}

δ = IN, λ = RATED,
φ = {rating → (β = 1), time → ?, role → (β = UNDEF)}

δ = IN, λ = RATED,
φ = {rating → (β = 1), time → (β = 1234), role → ?}

δ = IN, λ = RATED,
φ = {rating → ?, time →?, role → (β = UNDEF)}

δ = IN, λ = RATED,
φ = {rating → ?, time → (β = 1234), role → ?}

δ = IN, λ = RATED,
φ = {rating → (β = 1), time → ?, role → ?}

δ = IN, λ = RATED,
φ = {rating → ?, time → ?, role → ?}

Figure 4.4: Lattice Formed by the Generalisation Set of a Relationship Description

Algorithm 4.1 Compaction Operation
1: function COMPACT(K(v))
2: Ψsg = ; . generalisation superset
3: for k in K(v) do . populate generalisation superset
4: Ψsg =Ψsg ∪Ψg(ψ ∈ k)
5: end for
6: Ψsg = PC F(Ψsg , K(v)) . sort from best to worst, using a PCF function introduced later
7: for ψcandidate in Ψsg do
8: i = 0 . number of cached degrees that will be compacted out by this candidate
9: for k in K(v) do

10: if ψcandidate ≥g ψ ∈ k then
11: i = i+ 1
12: end if
13: end for
14: if i > 1 then
15: nnew = 0 . value of the new cached degree
16: for k in K(v) do
17: if ψcandidate ≥g ψ ∈ k then
18: nnew = nnew + n ∈ k
19: K(v) = K(v) \ k . remove a cached degree
20: end if
21: end for
22: knew = (ψcandidate, nnew)
23: K(v) = K(v)∪ {knew} . add a new cached degree
24: return K(v) . exit
25: end if
26: end for
27: end function

38 Chapter 4. Theory

With the compaction operation defined and explained, we now state and prove a few related theorems.

Theorem 4.35. If |K(v)|> 2|Λ|, then the compaction operation results in K(v)′ = COMPACT(K(v)), such

that |K(v)′|< |K(v)|.

Proof. We prove directly. Assume that |K(v)| > 2|Λ| and K(v)′ = COMPACT(K(v)). There are |∆||Λ| =

2|Λ| distinct pairs (δ ∈ ∆,λ ∈ Λ). Since |K(v)| > 2|Λ|, then there must be k1, k2 ∈ K(v) and ψ1, n1 ∈

k1,ψ2, n2 ∈ k2, such that (ψ1 6= ψ2) ∧ (δψ1
= δψ2

) ∧ (λψ1
= λψ2

). Then for an imaginary edge e at

v, such that δ(e, v) = δψ1
= δψ2

and λ(e) = λψ1
= λψ2

, and its most general relationship description

ψmaxg(e, v), it must be the case that (ψmaxg(e, v) 6=ψ1)∧ (ψmaxg(e, v) 6=ψ2).

This is because if that was not the case, either (ψmaxg(e, v) = ψ1) ∧ (ψmaxg(e, v) = ψ2), but then

ψ1 =ψ2, which has been established to be false earlier in this proof. Alternatively, (ψmaxg(e, v) =ψ1)∨

(ψmaxg(e, v) = ψ2), which means (ψ1 ≥g ψ2)∨ (ψ2 ≥g ψ1) (from the Definition 4.33 of ψmaxg(e, v)),

but then the more specific of the two would have been removed on line 19 of the compaction operation.

Consequently, it must be the case (ψmaxg(e, v) ≥g ψ1) ∧ (ψmaxg(e, v) ≥g ψ2), which means k1 and k2

would be removed on line 19 and replaced by knew = (ψmaxg(e, v), n1 + n2) on lines 22 - 24, resulting

in |K(v)′|< |K(v)|.

We now re-state an earlier theorem (Theorem 4.30) and prove that it holds even after the cache has

gone through a compaction operation.

Theorem 4.36. There are no two elements k1 ∈ K(v) and k2 ∈ K(v), such that ψ1 ∈ k1 =ψ2 ∈ k2.

Proof. We prove directly. Theorem 4.30 proves that this is the case when no compaction has occurred.

After a compaction operation on cache K(v), this is also true, because if ψ1 = ψ2, then (ψ1 ≥g

ψ2)∧ (ψ2 ≥g ψ1), which means one of them would be removed on line 19 of Algorithm 4.1, because

line 17 would evaluate to true.

Clearly, when the cache has gone through a compaction, it has lost its ability to provide vertex degrees

with respect to all possible relationship descriptions. Specifically,

Definition 4.37. Cache K(v) for vertex v is unable to provide vertex degree of vertex v with re-

spect to a relationship description ψquery, if and only if ∃k ∈ K(v), such that (ψ ∈ k 6≤g ψquery) ∧

¬mutex(ψ,ψquery).

Example 4.38. Let k ∈ K(v) be a cached degree in cache K(v) for vertex v and ψ ∈ k a relation-

ship description in k, of the form ψ = (IN, RATED, {rating → (β = 3), year → ?}). Let ψquery =

(IN, RATED, {rating → (β = 3), year → 2013}) be a relationship description, intended to count all

4.5. Constant Space Complexity Caching 39

incoming relationships of type RATED at vertex v with the rating property equal to 3, and the year

property equal to 2013. Because ψ, however, could represent incoming RATED relationships with

rating equal to 3 and year equal to any value, such a vertex degree cannot be determined. Note

that (ψ>g ψquery)∧¬mutex(ψ,ψquery), thus (ψ 6≤g ψquery)∧¬mutex(ψ,ψquery).

Example 4.39. Let k ∈ K(v) be a cached degree in cache K(v) for vertex v and ψ ∈ k a relation-

ship description in k, of the form ψ = (IN, RATED, {rating → (β = 3), year → ?}). Let ψquery =

(IN, RATED, {rating → ?, year → 2013}) be a relationship description intended for counting the ver-

tex’ degree. Again, such a vertex degree cannot be determined, this time because nothing can be said

about the two descriptions’ mutual order and because they are not mutually exclusive. To see why, con-

sider an incoming relationship of type RATED with the rating property equal to 3, and the year property

equal to 2013. Both descriptions would match such a relationship, thus they are not mutually exclusive.

Formally, (ψ 6≥g ψquery)∧ (ψ 6≤g ψquery)∧¬mutex(ψ,ψquery), thus (ψ 6≤g ψquery)∧¬mutex(ψ,ψquery).

The example above reveals an interesting fact. Theorem 4.31 is no longer valid, when the cache has

gone through a compaction operation. We replace Theorem 4.31 with a new theorem:

Theorem 4.40. There can be more than 1 cached degree k ∈ K(v) for an edge e ∈ E(v), such that

matches(e,ψ ∈ k, v).

Proof. We prove by construction. Let e1, e2 ∈ E(v) be two edges at vertex v, such that ψmaxs(e1, v) =

(IN, RATED, {rating → (β = 2), year → (β = 2013)}) and ψmaxs(e2, v) = (IN, RATED, {rating → (β =

3), year → (β = 2012)}). Then ψ1 = (IN, RATED, {rating → ?, year → (β = 2013)}) and ψ2 =

(IN, RATED, {rating→ (β = 3), year→ ?}) are valid generalisations of ψmaxs(e1, v) and ψmaxs(e2, v), re-

spectively. Note that (ψ1 6≥g ψ2)∧(ψ2 6≥g ψ1), thus it is possible that for some K(v)′ = COMPACT(K(v)),

ψ1 ∈ k1,ψ2 ∈ k2, where k1 ∈ K(v)′ and k2 ∈ K(v)′. Let e3 be another edge at v, such that δ(e, v) = IN,

λ(e) = RATED, and Π(e) = (rating→ 3, year→ 2013). Then matches(e3,ψ1, v)∧matches(e3,ψ2, v).

This introduces a potential problem: which one of the two cached counts k1 and k2 from the above

proof should be incremented when creating relationship e3? Choosing to increment both would clearly

be wrong, because a query for all incoming relationships of type RATED would count e3 twice; once in

k1 and once in k2.

To find a solution to this problem, we need to realise that since they both match edge e3, they are

not mutually exclusive, i.e., ¬mutex(ψ1,ψ2) (from Definition 4.28). We also know that (ψ1 6≥g ψ2)∧

(ψ1 6≤g ψ2), because if we could say something about their relative generality, one of them would have

been removed during compaction on line 19 of Algorithm 4.1.

40 Chapter 4. Theory

Consequently, the only queries that the cache can answer are with respect to a relationship description

ψquery, such that ((ψ1 ≤g ψquery)∨mutex(ψ1,ψquery))∧ ((ψ2 ≤g ψquery)∨mutex(ψ2,ψquery)), because

otherwise, ((ψ1 6≤g ψquery)∧¬mutex(ψ1,ψquery))∨((ψ2 6≤g ψquery)∧¬mutex(ψ2,ψquery)), which means

the query cannot be served (by Definition 4.37).

Now, if the relationship description in an answerable query ψquery is more general or equal to the

relationship description in one of the cached counts, then the query cannot be mutually exclusive with

the relationship description of the other cached count, because they share a common descendant in the

lattice. Formally, since ¬mutex(ψ1,ψ2), then (ψ1 ≤g ψquery)→¬mutex(ψ2,ψquery). However, in order

for the query to be answerable, it must be true that ψ2 ≤g ψquery. In such a case, the only thing that

matters is the final sum of the two cached counts, since (ψ1 ≤g ψquery)∧ (ψ2 ≤g ψquery).

If the relationship description in an answerable query is not more general or equal to any of the two

cached counts, then it must be mutually exclusive with both of them. However, the result of such a

query would not be influenced by any of the relationships cached with ψ1 and ψ2, by definition of

mutual exclusivity. Therefore, the solution to the problem is incrementing either one of the cached

counts (k1 or k2) by one.

4.5.2 Compaction Threshold

We now define a compaction threshold τ, which is simply an arbitrary constant specifying the maximum

number of cached counts for each vertex. Its purpose is to be used to determine, whether a compaction

process needs to take place at a vertex, and after it has taken place, whether it should be run again,

because the number of cached counts is still higher than the threshold.

4.6 Property Change Frequency Function

Before we conclude the chapter, there is one remaining topic to be discussed, the PCF function in

Algorithm 4.1, i.e., the function that determines best-to-worst ordering of generalisations in the gener-

alisation superset Ψsg for cache K(v).

It is clear from the discussion above that in order to bring the space complexity of the cache to O(1),

some queries need to be sacrificed in the sense that the cache will not be able to answer them. Based

on the movie graph example used throughout this report, we assume that the properties with most

frequently changing values are less important and should, thus, be sacrificed first.

It is fairly reasonable to assume that one will ask how popular a movie is more frequently than how

4.6. Property Change Frequency Function 41

many ratings were exactly created at a specific point in time. We do, however, acknowledge the fact

that for some use cases, the opposite could be true. Users might want to count ratings based on the

time when they were created. In this case, a different approach would have to be investigated. Below,

we propose what we believe might be a sensible default strategy for many real-life applications.

It is important to note that in real-life graphs, it will not usually be the case that for all property keys

α ∈ A, a property value will be defined for every relationship. Instead, different properties are defined

for different types of relationships. For instance, it makes sense to define a timestamp property on a

RATED relationship, but not so much on an IS_OF_GENRE relationship. Therefore, the strategy should

treat properties with respect to relationship type, rather than as a global concern.

4.6.1 Specification by Example

We now specify the requirements of the PCF function by examples (inspired by Adzic [1]). In all of

them, we assume the compaction threshold τ = 4 and ask the question, which cached degree shall be

generalised and how.

Example 4.41. Consider the following cached degrees in cache K(v):

k1 = ((IN, RATED, {rating→ (β = 2), timestamp→ (β = 1234)}), 1)

k2 = ((IN, RATED, {rating→ (β = 2), timestamp→ (β = 1354)}), 1)

k3 = ((IN, RATED, {rating→ (β = 2), timestamp→ (β = 2889)}), 1)

k4 = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 4544)}), 1)

k5 = ((IN, RATED, {rating→ (β = 4), timestamp→ (β = 0890)}), 1)

In this case, generalising rating would not result in any compaction, since each timestamp has a dif-

ferent value. Also, there is only one relationship with rating equal to 3, and one with rating equal

to 4. Therefore, we shall generalise the timestamp on relationships with rating equal to 2. This is

consistent with the idea of sacrificing attributes that change most frequently. Thus, we would like the

cache K(′v)′ to look as follows, after compaction:

k′1 = ((IN, RATED, {rating→ (β = 2), timestamp→ ?}), 3)

k′2 = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 4544)}), 1)

k′3 = ((IN, RATED, {rating→ (β = 4), timestamp→ (β = 0890)}), 1)

It would also be possible to generalise both rating and timestamp, but that would mean losing more

42 Chapter 4. Theory

information than absolutely necessary.

Example 4.42. Consider the following cached degrees in cache K(v):

k1 = ((IN, RATED, {rating→ (β = 2), year→ ?}), 3)

k2 = ((IN, RATED, {rating→ (β = 3), year→ (β = 2011)}), 1)

k3 = ((IN, RATED, {rating→ (β = 3), year→ (β = 2011)}), 1)

k4 = ((IN, RATED, {rating→ (β = 4), year→ (β = 2011)}), 1)

k5 = ((IN, RATED, {rating→ (β = 1), year→ (β = 2012)}), 1)

In this case, generalising rating for some year, for instance 2011, could make sense, potentially leading

to the following state of cache K(′v)′:

k′1 = ((IN, RATED, {rating→ (β = 2), year→ ?}), 3)

k′2 = ((IN, RATED, {rating→ ?, year→ (β = 2011)}), 3)

k′3 = ((IN, RATED, {rating→ (β = 1), year→ (β = 2012)}), 1)

However, this is not so desirable. K(v) was already unable to answer queries for vertex degrees con-

strained to a specific year, because on k1, year was already generalised. K(v)′ , furthermore, has even

more limited query answering ability, because queries for vertex degrees with a specific rating cannot

be answered either. Instead, it would be preferable to generalise out another year property, since it

has been treated as less important than rating by a previous compaction, resulting in the state of k′1.

In other words, we would like to pretend that the 3 incoming relationships in K(v) of type RATED with

rating equal to 2 all had a different year value. Moreover, we pretend that this value was different

from any other concrete year value that other cached relationship descriptions have. We then end up

with 5 different year values (3x unknown, 1x 2011, 1x 2012), but only 4 different rating values.

Thus, a more suitable state of K(v)′ after a compaction of K(v) would be:

k′1 = ((IN, RATED, {rating→ (β = 2), year→ ?}), 3)

k′2 = ((IN, RATED, {rating→ (β = 3), year→ ?}), 2)

k′3 = ((IN, RATED, {rating→ (β = 4), year→ (β = 2011)}), 1)

k′4 = ((IN, RATED, {rating→ (β = 1), year→ (β = 2012)}), 1)

Example 4.43. Consider the following cached degrees in cache K(v):

4.6. Property Change Frequency Function 43

k1 = ((IN, RATED, {rating→ (β = 2), timestamp→ (β = 1234)}), 1)

k2 = ((IN, RATED, {rating→ (β = 2), timestamp→ (β = 1354)}), 1)

k3 = ((OUT, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

k4 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

k5 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 0890)}), 1)

In this case, timestamp is different on each relationship description. Observe that there are 3 relation-

ship descriptions with type RATED and 2 with type WOULD_LIKE_TO_SEE. Thus, we have more evidence

for relationships of type RATED that timestamps change with every new relationship. We shall, there-

fore, prefer the following state of cache K(v)′ after compaction:

k′1 = ((IN, RATED, {rating→ (β = 2), timestamp→ ?), 2)

k′2 = ((OUT, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

k′3 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

k′4 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 0890)}), 1)

Based on these examples, we now come up with the notion of informational value, which is a measure

of how useful a cached relationship description is, with the intention to use this measure for ordering

candidate generalisation for achieving the smallest loss in informational value during compaction.

4.6.2 Informational Value

Definition 4.44. Let ρ(K(v),λ,α) be the total number of distinct values of property with key α ∈ A

across all relationship descriptionsψ(δψ,λψ,φ)with λψ = λ, where k(ψ, n) ∈ K(v). Each φ ∈ψ, such

that φ(α) 6= ? adds 1 to this number. If φ(α) = ?, then the number ρ is incremented by n ∈ ψ, in line

with the decision to pretend that every relationship responsible for the cached degree with relationship

description ψ had a different value assigned to property key α. This will ensure that properties already

assigned a to a wildcard (?) constraint will always be generalised in preference to properties only

constrained to concrete values.

Example 4.45. Let K(v) contain the following cached degrees:

k1 = ((IN, RATED, {rating→ (β = 2), timestamp→ ?}), 2)

k2 = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

44 Chapter 4. Theory

k3 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

Then ρ(K(v), RATED, timestamp) = 3, because k1 contains (up to) 2 distinct values, and k2 contains 1.

k3 is not taken into account, because it is of a different relationship type.

Definition 4.46. Let ρavg(K(v),λ,α) be the average number of distinct values of property with key

α ∈ A across all relationship descriptions ψ(δψ,λψ,φ) with λψ = λ, where k(ψ, n) ∈ K(v). In plain

language, it is the number of distinct values of a property, per relationship of a given type. It is

computed as ρavg(K(v),λ,α) = ρ(K(v),λ,α)
nλ+1

. nλ is the total number of relationships at vertex v with type

λ, i.e., nλ =
∑

ψ(δψ,λψ,φ)∈k,s.t.(k∈K(v)∧λψ=λ)
n ∈ ψ. Note that ρavg < 1 at all times, because the number

of distinct values of a property for a specific relationship type cannot be greater than the number of

relationships of that type. The larger the value of ρavg , the more frequently the property changes its

value on relationships of given type.

Example 4.47. Let K(v) contain the following cached degrees:

k1 = ((IN, RATED, {rating→ (β = 2), timestamp→ ?), 2)

k2 = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

k3 = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

Then ρavg(K(v), RATED, timestamp) = 3
4
, because ρ(K(v), RATED, timestamp) = 3 and the number

of relationships with λ = RATED is also 3, i.e., nRATED = 3. Thus, ρavg(K(v), RATED, timestamp) =
ρavg (K(v),RATED,timestamp)

nRATED+1
= 3

4
.

On the other hand, there are only 2 distinct values for the rating property on RATED relationships, thus

ρavg(K(v), RATED, rat ing) =
ρavg (K(v),RATED,rat ing)

nRATED+1
= 2

4
= 1

2
.

In other words, since 3
4
> 1

2
, the timestamp property, on average, changes its value more frequently

than the rating property on RATED relationships.

Note the +1 in the denominator of ρavg calculation. This is to make sure that in the case of a potential

tie, ρavg for more frequently occurring relationships is slightly larger than for less frequently occurring

ones. The rationale is that we have more evidence for such an average number of distinct values and,

thus, want to claim that the more frequently occurring relationships change the property value more

frequently, as required by the specification.

For instance, consider nλ1 = 10 relationships with ρ1 = 5 distinct values of a property, and nλ2 = 20

different relationships with ρ2 = 10 distinct values of the same property. Then ρavg1 =
5

10+1
and

4.6. Property Change Frequency Function 45

ρavg2 =
10

20+1
. Although the property changes with the same frequency in both cases (i.e., a potential

tie), ρavg1 < ρavg2, thus we consider the property to be changing more frequently on relationships of

type λ2. As we’ll see later, this results in relationships of type λ2 being treated as better candidates for

compacting out some properties, whist relationships of type λ1 will get another chance to “prove" their

property changes less frequently.

Definition 4.48. Let ι(K(v),ψ,α) be the informational value of a property with key α ∈ A on a rela-

tionship description ψ(δψ,λψ,φ) with respect to cache K(v). It is defined as ι(K(v),ψ,α) = 1, if and

only if ψ(α) 6= ?, and ι(K(v),ψ,α) = ρavg(K(v),λψ,α) otherwise.

Example 4.49. Let K(v) contain the following cached degrees:

k1 = (ψ1, n1) = ((IN, RATED, {rating→ (β = 2), timestamp→ ?), 2)

k2 = (ψ2, n2) = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

k3 = (ψ3, n3) = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

Then,

ι(K(v),ψ1, rating) = 1, because rating is not mapped to ?. On the other hand,

ι(K(v),ψ1, timestamp) = ρavg(K(v), RATED, timestamp) = 3
4

from previous example.

Intuitively, properties descriptions constraining properties to a single, concrete value (including UNDEF)

carry more informational value than those placing no constraints on the property. The maximum

informational value is 1 and it is only achieved for properties with concrete constraints, by definition.

All others have informational value less than 1, by definition of ρavg . This means concrete values are

always preferred to wildcards.

Definition 4.50. Let ι(K(v),ψ) be the informational value of a relationship description ψ(δψ,λψ,φ)

with respect to cache K(v). It is defined as ι(K(v),ψ) = 1
|A(λψ)|+1

∑

α∈A(λψ)
ι(K(v),ψ,α), where A(λψ) is

the set of all attributes defined on relationship descriptions with type equal to λψ in K(v).

Example 4.51. Let K(v) contain the following cached degrees:

k1 = (ψ1, n1) = ((IN, RATED, {rating→ (β = 2), timestamp→ ?), 2)

k2 = (ψ2, n2) = ((IN, RATED, {rating→ (β = 3), timestamp→ (β = 2889)}), 1)

k3 = (ψ3, n3) = ((IN, WOULD_LIKE_TO_SEE, {level→ (β = 1), timestamp→ (β = 4544)}), 1)

Then,

ι(K(v),ψ1) =
1

|A(RATED)|+1

∑

α∈A(RATED)
ι(K(v),ψ,α) = 1

3
(ι(K(v),ψ1, rating) + ι(K(v),ψ1, timestamp)) =

1
3
(1+ 3

4
) = 7

12

46 Chapter 4. Theory

This time, the +1 in the denominator of the fraction is to prevent division by zero in the pathological

case where A(λψ) = ;, thus |A(λψ)|= 0.

Since every wildcard assigned to a property constraint decreases the value of ι more than a concrete

constraint, more specific descriptions will have a higher informational value than more general ones.

Thus, they will be considered “better” generalisations, as specified.

4.6.3 Sorting

During the cache compaction operation, generalisations can now be sorted according to their informa-

tional value, such that the ones with the highest informational value are the best ones and get used

first, whilst the ones with the lowest informational value are the last, keeping the information loss as

small as possible.

Definition 4.52. Property Change Frequency function PCF produces a sorted set Ψ′sg = PCF(Ψsg , K(v))

from a generalisation superset Ψsg for cache K(v), such that the elements of ψ ∈ Ψ′sg are sorted by

decreasing value of ι(K(v),ψ).

Chapter 5

Implementation

In this chapter, we present the design and implementation of the software that puts the theoretical

ideas, introduced thus far, into practice. We design a software module called Relationship Count Module

that implements the theoretical vertex degree cache from previous chapter. Before that, however, we

introduce a framework, called GraphAware, which supports this module as well as future modules with

similar purposes.

Design vs. Implementation The practical outcome of this project will mainly be used by software

developers. For this reason, it is occasionally helpful to show snippets of code, although that practice

is kept to a minimum. It is also one of the reasons why design and implementation are presented

together; another reason is the fact that the software has been developed in a number of design-test-

implement-refine1 iterations. It would thus be challenging to present some of the design considerations

without going into some level of implementation detail.

Tools and Techniques Java 7 and Neo4j 1.9.2 are used in the implementation described below.

Maven 3.0.3 is used as a dependency management and build tool. JUnit 4.10 and Mockito 1.9.0

are used for testing, and Log4j 1.2.17 for logging. The only requirement for compiling and running the

code is Java 7 and Maven; all other dependencies get downloaded automatically. Detailed instructions

are provided in Appendices B and C. Object-oriented design best-practices are used throughout, unless

a deviation from them is beneficial for performance or maintainability of the code. Where these devi-

ations occur, they are explained in the code itself as comments; when relevant, they are mentioned in

this report as well.

1the practice of writing automated tests against designed interfaces before actually implementing the logic is sometimes
called test-driven development (TDD); see, for instance, Beck [3]

47

48 Chapter 5. Implementation

Neo4j Core API Before we begin, it is useful to introduce the most relevant part of the Neo4j Core API,

depicted in Figure 5.1. It is a low-level imperative API that provides graph mutation and traversal capa-

bilities. The classes and methods have fairly self-explanatory names. The database itself is represented

by the GraphDatabaseService interface and provides node creation and retrieval capabilities, along

with a way to start a transaction. Nodes and relationships, both implementing the PropertyContainer

interface, are represented as Node and Relationship, respectively. The Node class provides access

to relationships at that node, whilst Relationship provides access to its type and both participating

nodes. Both Node and Relationship allow property retrieval, mutation, and deletion, as well as dele-

tion of themselves. In all UML diagrams presented in this chapter, Neo4j classes are green, GraphAware

Framework classes are blue, and Relationship Count Module classes are pink.

5.1 GraphAware Framework

Caching on Node Properties The purpose of the Relationship Count Module is to implement a cache

for vertex degrees, also known as relationship counts. The first design consideration is where to store

the cached information. The theoretical cache developed in previous chapter imposes no limitations

in this respect. However, storing the information outside of Neo4j and keeping it up to date would

require the presence of another transactional resource and some sort of coordination between Neo4j’s

transaction manager and the other resource’s transaction manager. Whilst well-known algorithms and

protocols exist for such a coordination, it would introduce unnecessary overhead. Since Neo4j itself is a

transactional database, it is possible to store cached relationship counts in the graph itself. Because the

counts should be cached for each node and because they are essentially key-value pairs, node properties

seem to be an ideal place for this caching.

Metadata in the Graph Generalising this idea, it is not difficult to envisage other useful, perhaps

analytical, modules that would benefit from writing extra information into the graph. There is no

reason such “metadata" should be limited to node properties; they could take the form of relationship

properties, but also entire subgraphs. The framework, for the moment acting only as a library of useful

code, provides a set of interfaces and abstract base classes to support such a development.

5.1.1 Representations

Graph Concept Representations The first presented group of classes and interfaces enables devel-

opment of custom detached2 representations of nodes, relationships, and properties with additional

2i.e., not referencing the database or any other Neo4j classes

5.1. GraphAware Framework 49

Figure 5.1: Neo4j Core API (with a few irrelevant methods omitted)

50 Chapter 5. Implementation

capabilities. For instance, a module might need a relationship, which can convert itself to a string rep-

resentation. Another module, to give a different example, might want to use a relationship description

aware of the general-to-specific ordering described in previous chapter. Both of these examples are, in

fact, requirements for the Relationship Count Module, as we shall see later. One more example might

be the need to serialise a node with all its properties and send it across the wire.

Figure 5.2: Interfaces and Abstract Classes for Relationship Representations

For these purposes, a hierarchy of extendible representations of nodes, relationships, and properties is

provided. As an example, Figure 5.2 presents the hierarchy for relationship representations. Similar

hierarchies exist for nodes and properties representations. Implementations and extensions of these

classes simply maintain a copy of the information from the graph and optionally provide additional

functionality. Four types of basic implementations of these interfaces, each intended for different use

cases, are also included in the framework:

• Immutable representations that store properties as objects

• Mutable representations that store properties as objects

5.1. GraphAware Framework 51

• Immutable representations that store properties as strings

• Mutable representations that store properties as strings

The use cases for some of these implementations are not defined here, because they will be determined

by their future users, i.e., developers of additional GraphAware modules. As an indication, however,

immutable representations are useful in multi-threaded environments where thread-safety needs to

be guaranteed, while mutable ones are useful where the overhead of making immutable copies upon

modification is not acceptable. Representations storing property values with their original Java types

might be useful when these types matter, whilst representations with string property values are useful

for string-convertible representations, as we shall see in the next paragraph.

String Convertible Representations The Relationship Count Module caches vertex degrees as key-

value pairs on nodes, where key is the relationship description and value is the number of relationships

with such a description at a node. Because property keys in Neo4j are strings, relationship and, indeed,

properties descriptions need to be convertible, or serialisable, to a string. Since string-converted rela-

tionship descriptions represent data already present elsewhere in the graph, only one-way conversion

is needed, i.e., from the real graph concept (node, relationship, property) to a string. Again, because

other modules will potentially write additional metadata into the graph, string-convertible representa-

tions of nodes, relationships, and properties are provided by the framework.

String Convertible Relationships Chapter 4 shows that the relationship descriptions that are used

in cached degrees and, therefore, need to be string-convertible, are the most specific descriptions of re-

lationships, with all properties constrained to a concrete value, or generalisations thereof, where some

properties might be unconstrained (i.e., mapped to the ? predicate). Unlike in a theoretical property

graph, where the knowledge of all property keys α ∈ A was assumed at all times, a property container

in a real graph only knows about properties actually defined on itself. For example, a RATED relation-

ship with a single rating property knows nothing about properties of other relationships; thus, it does

not know the set A of all property keys used in the graph. Based on these observations, string repre-

sentations of relationship descriptions are designed to be of the form _GA_MID_λ#δ#α1#β1#α2#β2#. . .,

where:

GA is a prefix indicating that this is GraphAware metadata

MID is a prefix indicating, which GraphAware module the metadata belongs to (module ID)

λ is a relationship type,

δ is a relationship direction,

52 Chapter 5. Implementation

αx are property keys,

βx are property constraints.

If a property α is constrained to a concrete value β , such that β 6= UNDEF, then βx is this value β

converted to a string. If, on the other hand, a property α is unconstrained, βx takes on a special

“wildcard" value _GA_*, which represents the ? predicate. Finally, when a property α is constrained to

β = UNDEF, then it is not present in the string representation at all. In other words, β = UNDEF is

the default property constraint on string-convertible relationship descriptions, unless explicitly defined

otherwise.

Example 5.1. Consider a relationship description ψ = (IN, RATED, {rating → (β = 2), timestamp →

?, role→ (β = UNDEF)}, written by module M1. The string representation of ψ would be

_GA_M1_RATED#INCOMING#rating#2#timestamp#_GA_*#.

The _GA_ prefix is used to distinguish metadata written by GraphAware from data written by the

database user. Similarly, the MID (module identifier) prefix identifies the module this data belongs

to, which prevents modules from interfering with each other’s metadata.

Converting β values to strings is achieved using standard Java toString() methods for all primitive

types3, while arrays of primitives are converted to [element1, element2, ...]. Information about

the original type of the value is thus lost during this conversion, which would be a problem, for example,

if the value 2 (int) for a property on a relationship had a different meaning from value "2" (String)

for the same property on a relationship of the same type. However, such a design would hardly be

considered a good practice and could easily be avoided, rendering this limitation only theoretical.

In the string conversion presented above, the hash character (#) is used as information delimiter. This

could cause a problem when some of the delimited information contains this character. For that reason,

the framework can be configured to use a different separator of information from the default #.

Performance testing and profiling has shown that string conversions can take a relatively long time. As

an optimisation, string representations of immutable node, relationship and property descriptions are

only computed once for each instance, upon the first request for such a conversion (lazily), then cached

on the object itself. Subsequent requests are then served from this cache.

5.1.2 Transaction Event API

Another clear requirement for the Relationship Count Module, as well as any other module that wishes

to store metadata about the graph and keep them up to date, is the opportunity to react to every

3using their Object equivalents, e.g. Integer.toString() for int values

5.1. GraphAware Framework 53

graph mutation before the transaction actually commits, so that it can alter this mutation, possibly by

adding/updating metadata, or even preventing the transaction from committing altogether.

Neo4j Transaction Event API Neo4j provides a mechanism supporting such a requirement. Imple-

mentations of Neo4j’s TransactionEventHandler interface can register with the database and receive

a callback before data is about to be committed, after data has been committed, and after a transaction

has been rolled back, for whatever reason. Information about mutations that are about to occur / have

just occurred are encapsulated in an instance of TransactionData. This interface allows users to find

out, which property containers have been created and deleted in the transaction, and which properties

have been assigned to and removed from property containers. Figure 5.3 depicts this API.

Figure 5.3: Neo4j Transaction Event Handler API

However, there is no straightforward way to find out, which property containers have been changed and

how. One would have to iterate through assigned and removed properties for all property containers

and organise them by property container ID to find that information. In fact, even inquiring about

properties of a single deleted property container requires the developer to iterate through the removed

properties of all property containers and pick out the right ones. Put in another way, getting information

about a created relationship’s properties can be easily done using methods provided for that purpose

on the Relationship interface, whilst trying to do the same thing for a deleted relationship results in

exceptions being thrown by Neo4j.

Consequently, before a transaction commits, it is impossible to traverse the graph using standard Neo4j

APIs without taking the risk of encountering a property container deleted in the transaction and getting

an exception, thus rolling back the entire transaction. It is, however, reasonable to expect that (ana-

lytical) modules will need to traverse the graph, in order to find out what metadata to create/update.

54 Chapter 5. Implementation

Finally, even if module developers took care and traversed the graph differently in these scenarios,

checking TransactionData to make sure a deleted property container has not been encountered, each

module would have to do this independently.

Besides increased chance of introducing bugs, this is wasteful, since all modules would essentially

perform the same computation on the same instance of TransactionData, trying to find:

• created property containers and their properties

• deleted property containers and their properties

• changed property containers and which properties have been changed and how

Improved Transaction Event API GraphAware provides an improved API for transaction event han-

dling, shown in Figure 5.4. This API allows direct access to all the created, deleted, and changed

property containers along with the information about the exact extent of the changes. These are en-

capsulated in the Change object, which provides methods for accessing the old version of the changed

object, as well as the new one. Unlike in the original Neo4j API, properties of deleted property contain-

ers can be directly accessed through the Node and Relationship objects, as one normally does when

working with Neo4j. All this has been made possible thanks to two design decisions discussed in turn.

Lazy Transaction Event API The first is the introduction of a “lazy" implementation of

ImprovedTransactionData, called LazyTransactionData, and related class hierarchy, depicted in Fig-

ure 5.5. LazyTransactionData uses LazyNodeTransactionData and

LazyRelationshipTransactionData to provide data about nodes and relationships, respectively. These

classes are decorators of Neo4j’s TransactionData and contain a number of data structures, which sup-

port answering the desired questions efficiently, without the need to interrogate TransactionData over

and over again. These data structures, shown in Listing 5.14, are built lazily, meaning that they are

populated the first time information is requested. Consequently, TransactionData is not queried for

the same information more than once. Moreover, if some data is never requested, TransactionData is

not queried for that data at all, resulting in no additional overhead.

Property Container Wrappers The ImprovedTransactionData API and its lazy implementation al-

low easier and more efficient querying of graph mutations. However, it does not solve the problem

of exceptions being thrown when properties of deleted property containers are accessed. In order to

4These are the same for nodes and relationships, thus reside in LazyPropertyContainerTransactionData. T is the type
of PropertyContainer.

5.1. GraphAware Framework 55

Figure 5.4: GraphAware Improved Transaction Event API

� �
private Map <Long , T> created;
private Map <Long , T> deleted;
private Map <Long , Change <T>> changed;

/** <ID, <key , new value >> */
private Map <Long , Map <String , Object >> createdProperties;

/** <ID, <key , old value >> */
private Map <Long , Map <String , Object >> deletedProperties;

/** <ID, <key , old and new value >> */
private Map <Long , Map <String , Change <Object >>> changedProperties;

/** <ID, <key , old value >> of properties of deleted prop. containers */
private Map <Long , Map <String , Object >> deletedContainersProperties;� �

Listing 5.1: LazyPropertyContainerTransactionData Data Structures

56 Chapter 5. Implementation

Figure 5.5: Lazy Implementation of Improved Transaction Event API

5.1. GraphAware Framework 57

allow regular graph traversals in the context of transaction event handlers, decorators (also known as

wrappers) [14] of Neo4j Node and Relationship objects have been designed and implemented, en-

abling these traversals. Before they are introduced, however, let us claim that Node and Relationship

decorators have much wider applicability than this use case.

Consider, for example, a module (let us call it Temporal Graph Database for the moment), which pre-

vents nodes, relationships, and properties from being deleted altogether and marks them as obsolete,

perhaps with a timestamp, instead. Such a module would benefit from the use of property container

decorators, re-implementing the methods that delete information from the graph, whilst delegating all

other methods to the decorated object. Since the utility of property container decorators is not lim-

ited to the use case discussed in the previous paragraph, the framework provides generic support for

building these decorators, in the form of the class hierarchy presented in Figure 5.6.

Figure 5.6: Base Classes and Interfaces for GraphAware PropertyContainer Decorators

Graph Snapshotting The first implementation that uses this support for decorators solves the issue

presented above and introduces the ability to traverse the graph normally when handling transaction

events, without the need to explicitly check for deleted property containers. It introduces a Node imple-

mentation, called NodeSnapshot and a Relationship implementation, called RelationshipSnapshot,

both decorators representing the state of a node/relationship before the currently handled transaction

started. These snapshots are aware of NodeTransactionData and RelationshipTransactionData,

provided to them encapsulated in an instance of TransactionDataContainer, and consult the data

during traversals, effectively filtering out changes that occurred in the transaction. This design is pre-

sented in Figure 5.7.

58 Chapter 5. Implementation

Figure 5.7: Node and Relationship Snapshots

Lazy Transaction Data Revisited This snapshotting functionality is actually used by

LazyTransactionData. If, for instance, a relationship has been changed in a transaction,

LazyTransactionData returns two versions of this changed relationship, wrapped in the Change object:

the old version (as it was before the transaction started) as an instance of RelationshipSnapshot and

a new instance (as it will be when the transaction commits) as Neo4j’s internal relationship representa-

tion. Since both of these instances implement the Relationship interface, the old and the new version

of the graph can be traversed in the exact same way, depending on which version of the relationship

the traversal starts at. In case it starts with the old snapshot, every node and relationship produced by

the traversal is a snapshot wrapper. Thus, if desired, the entire graph can be traversed this way, looking

as if the transaction never happened. This happens completely transparently to the developer.

To reiterate, starting the traversal from an old version of a changed property container or a deleted

property container traverses the old version of the graph, while starting from a new version of a changed

property container or a newly created one, traverses the new version. This is very convenient for

future module developers, because it happens transparently and the two versions of the graph can be

seamlessly compared. Since the same instance of LazyTransactionData is used everywhere, it is only

populated once (if ever), eliminating wasteful CPU cycles.

Filtered Transaction Data It is possible that users of ImprovedTransactionData might not be inter-

ested in all nodes, relationships, and properties. For example, the Relationship Count Module is not

interested in any mutations to nodes at all. Or, for instance, some users could only wish to use the

5.1. GraphAware Framework 59

module for counting relationships of a certain type. In such cases, it would be wasteful to keep track

of changes that the user does not care about. For that reason, a set of classes, following the strategy

design pattern [14], has been designed for expressing interest in certain kinds of information. These

are shown in Figure 5.8. InclusionStrategies encapsulate all strategies for all the property graph

concepts: nodes, relationships, node properties, and relationship properties. It is up to module devel-

opers and programmers using these modules to implement these strategy interfaces to suit particular

business requirements of the application that uses Neo4j and the framework. The implementations can

choose to base their decisions on relationship types, property presence, or any other characteristic of

the object a decision is being made about. Trivial implementations are also provided by the framework,

i.e., implementations that include all nodes, relationships, and properties, and implementations that

include no nodes, relationships, or properties.

Figure 5.8: Strategies for Including Information

These strategies are used for filtering out unnecessary information when querying

ImprovedTransactionData and when traversing the graph during transaction event handling. Two sets

of decorator classes enable this filtering. Both of them consult these strategies and only return objects,

for which the include method returns true. Figure 5.9 shows FilteredTransactionData, a decorator

of ImprovedTransactionData, which is capable of filtering the data. Figure 5.10 shows FilteredNode

and FilteredRelationship, decorators of any Node or Relationship, respectively, which effectively

hide portions of the graph when used for traversals, according to the provided strategies.

60 Chapter 5. Implementation

Figure 5.9: Filtered Transaction Data

Figure 5.10: Filtered Nodes and Relationships

5.1. GraphAware Framework 61

5.1.3 Batch Operations

Thanks to Neo4j’s support for transactions and the API improvements discussed above, modules can

write useful metadata to the graph and keep them up to date. Since there is some overhead inherent

to transactional support in concurrent environments, Neo4j provides a mechanism for fast initial data

import into the database with no transactional support, called the BatchInserter. Such an import

must be run in a single-threaded fashion and has some functional limitations, such as the inability

to delete nodes and relationships. The intentional lack of transactional support means that existing

TransactionEventHandlers do not get notified of graph mutations. Consequently, modules that rely

on metadata written to the graph cannot be used with this database population approach.

To solve this issue, a set of classes that simulate transactions when inserting data in batches has been

introduced. TransactionSimulatingBatchInserter is a decorator of BatchInserter, which allows

for the registration of TransactionEventHandlers. It records all graph mutations in an instance of

BatchTransactionData, before delegating the actual work to the wrapped BatchInserter. After

a configurable number of mutations occur (1,000 by default), the recorded mutations are submit-

ted to the registered TransactionEventHandlers. Since BatchTransactionData implements Neo4j’s

TransactionData, this situation is indistinguishable from regular transactional graph database opera-

tions, from TransactionEventHandlers’ point of view. Therefore, all code developed for transactional

operations can be re-used for batch inserts without any modifications at all, including GraphAware’s

own ImprovedTransactionData. Figure 5.11 shows the design of this solution.

5.1.4 Module Lifecycle Management

With all the supporting functionality introduced, we now present the design of the main framework

functionality. Let us first state the basic philosophy behind the framework. Modules, i.e., software

components that wish to store metadata about the graph (most likely, but not necessarily in the graph

itself) and keep them up to date, register with the framework. The framework, in turn, manages their

lifecycle and notifies these modules at runtime about soon-to-be-committed changes to the database.

The framework constitutes a few Java classes shown in Figure 5.12.

Modules Each module must implement the GraphAwareModule interface, which allows the framework

to manage its lifecycle and delegate work to it. First of all, each module has to be able to provide its

ID, which must be unique within the context of the framework. Multiple instances of the same module

are allowed, as long as they have different IDd. The ID allows the framework to uniquely identify the

module.

62 Chapter 5. Implementation

Figure 5.11: Batch Operations Support

5.1. GraphAware Framework 63

Figure 5.12: Core GraphAware Framework Classes

Secondly, each module (as well as any other class that implements ConfigurationAsString) must be

able to represent its entire internal configuration as a single string. This does not have to be human-

readable; the only requirement is that it changes when the configuration of the module changes. That

way, the framework can detect changes in module configurations and act upon them, as described

shortly.

Next, each module must provide an instance of InclusionStrategies, indicating, which parts of the

graph it is interested in. As mentioned before, the Relationship Count Module, for instance, is not

interested in nodes and their mutations at all. In fact, InclusionStrategies themselves are a good

example of internal module configuration, described in the previous paragraph, as long as they can be

changed by the module’s user (i.e., they are not hard-coded).

The core module logic resides in the body of the beforeCommit method, which accepts an instance of

ImprovedTransactionData as an argument. This is, in fact, an instance of

FilteredTransactionData, filtered according to the provided InclusionStrategies. Based on this

data, the module can create, update, and/or delete metadata in the graph. For example, the Relation-

ship Count Module, discussed below, watches for relationship creations, changes, and deletions and

updates the relationship count cache for each node accordingly.

64 Chapter 5. Implementation

In case the framework is used on an existing graph for the first time, metadata that each module would

have written, had it been running since the graph was empty, has to be created. For that reason, each

module implements the initialize method, which must achieve exactly that. This method is allowed

to perform potentially expensive global graph operations. Similarly, in case metadata has become out

of sync or corrupt, for instance due to the fact that the graph has been mutated without the framework

running, or when the module’s configuration has changed since the last run, the module must delete

and rebuild all its metadata using the reinitialize method5.

Finally, each module must implement the shutdown method, which is called by the framework before

the database is shut down. Modules must release resources and commit any pending updates in this

method.

Instantiation and Module Registration Two concrete classes are provided, representing the frame-

work. GraphAwareFramework is intended for regular usage with GraphDatabaseService, which must

be provided as an argument to its constructor. BatchGraphAwareFramework, on the other hand, ac-

cepts an instance of TransactionSimulatingBatchInserter and is intended for batch inserts, as the

name suggests. Once instantiated, GraphAwareModules can be registered with the framework, using

the registerModule method.

Framework Configuration There are some aspects of the framework that need to be globally config-

urable (in contrast to module internal configuration). An example of such a configuration is the de-

limiter used for separating information in string representations of nodes and relationships, discussed

already. Modules can choose to be made aware of the framework’s global configuration by implement-

ing the FrameworkConfigured interface, shown in Figure 5.13. These modules will be informed about

the configuration once they register with the framework, via invocation of their configurationChanged

method. An instance of FrameworkConfiguration, encapsulating the framework configuration infor-

mation, is passed to the method as an argument. DefaultFrameworkConfiguration with sensible

defaults is provided; it is used automatically when no explicit configuration is passed to the frame-

work’s constructor. Note that FrameworkConfiguration also encapsulates some logic dependent on

that configuration; for instance, the createPrefix method accepts a module ID as an argument and

creates a prefix that the module should use when writing and reading graph metadata.

5Note that each one of these methods must be implemented twice; once for usage with the transactional
GraphDatabaseService and once for batch insertions via BatchInserter. The reason for this is that the initialize and
reinitialize operations are not run in the context of an about-to-be-committed transaction; instead, they are run against
the database (or batch inserter) before it can be used by anyone else, and must manage starting and committing transactions
(if applicable) themselves.

5.1. GraphAware Framework 65

Figure 5.13: Class Hierarchy for Framework Configuration

Startup and Shutdown When all desired modules have been registered with the framework, the

start method must be invoked. At that point, the framework checks that all registered modules

have been run before with the same configuration they are reporting this time, using their asString

method. Modules that have not been run before get the initialize method invoked on them, whilst

reinitialize is called on modules that changed their internal configuration since the last time the

database was started. Finally, any modules that threw a NeedsInitializationException during

the last run of the database/framework must also reinitialize. Modules can throw this excep-

tion when they detect their own metadata is out of sync. Before the database is shut down, it in-

vokes the beforeShutdown method on all registered KernelEventHandlers, which is an interface that

GraphAwareFramework also implements for this reason. When this method gets invoked, the shutdown

method is invoked on each registered GraphAwareModule. This paragraph is summarised by the se-

quence diagram in Figure 5.14.

Reference Node Information about which modules were registered during the last run of the frame-

work, about individual module configurations, and about modules that need to be re-initialised is

stored in properties of the reference node (also called the root node), which is the node with ID=0.

The framework checks for the node’s presence upon startup and fails fast, if this node is not present

in the graph. At runtime, the framework prevents any transaction that tries to delete this node from

66 Chapter 5. Implementation

Figure 5.14: Sequence Diagram of Framework Startup and Shutdown

5.1. GraphAware Framework 67

committing. Like other metadata that the framework and its modules write to the graph, these are

prefixed with a framework-specific string to prevent interference with user-written properties. There-

fore, the framework places no limitations on usage of the reference node; it can (but does not have

to) be used as a regular graph node. For each registered module, there is a property with key

equal to _GA_CORE_MID, where MID is the module ID, and value equal to CONFIG:configAsString,

where configAsString is the string returned by the module’s asString method. In case the module

threw a NeedsInitializationException during its lifetime, the value of the property gets changed to

FORCE_INIT:timestamp, where timestamp is the timestamp of the first occurrence of the exception.

Runtime The framework keeps a list of modules that wish to be notified about transaction events. In

order to let these modules know about upcoming graph mutations, the framework itself implements

Neo4j’s TransactionEventHandler. Before a transaction commits, the framework first translates the

TransactionData, provided by Neo4j, into ImprovedTransactionData, introduced earlier. It then

wraps this data in an instance of FilteredTransactionData for each module, according to the mod-

ule’s InclusionStrategies, and passes the data to the module’s beforeCommit method. This happens

in the same order in which the modules registered with the framework. This runtime behaviour is

summarised by the simplified sequence diagram in Figure 5.15. As mentioned before (not shown in the

diagram), if a module detects that its own metadata does not seem to be up to date, it can choose to

throw a NeedsInitializationException. This is caught by the framework, logged as a warning, and

the module is marked for re-initialisation upon the next framework startup.

Figure 5.15: Sequence Diagram of Framework Runtime Usage

68 Chapter 5. Implementation

5.2 Relationship Count Module

The Relationship Count Module is a GraphAware Framework module that implements the vertex de-

gree cache from Chapter 4. It caches relationship counts as properties on nodes. In fact, two versions

of the module have been designed and implemented. FullRelationshipCountModule and correspond-

ing classes implement the theory from Chapter 4 with some minor deviations driven by performance,

API clarity, and other considerations. These are clearly stated as encountered. On the other hand,

SimpleRelationshipCountModule, which is not discussed any further in this chapter, is a significantly

simplified version that only takes relationship types and directions into account, but ignores proper-

ties. Thus, none of the concepts discussed in Chapter 4, such as general-to-specific ordering or cache

compaction apply to SimpleRelationshipCountModule. Its purpose is mainly performance evaluation,

which is discussed later in Chapter 6.

5.2.1 Property and Relationship Representations

Cacheable Representations Functionality based on some of the concepts introduced in Chapter 4,

namely general-to-specific ordering for properties (Definition 4.16) and relationships (Definition 4.23),

their mutual exclusivity (Definitions 4.22 and 4.28), the limited generalisation operation for rela-

tionship descriptions (Definition 4.33), and the set of all generalisations (Definition 4.34), is imple-

mented by CacheablePropertiesDescription and CacheableRelationshipDescription class hier-

archies. Figure 5.16 shows the CacheablePropertiesDescription hierarchy (pink) in the context of

supporting framework classes (blue, method signatures omitted).

The method signatures on CacheablePropertiesDescriptionImpl should clearly explain their pur-

pose. When comparing a cacheable properties description to another properties representation using

isMoreGeneralThan, isMoreSpecificThan, or isMutuallyExclusive, it is important to note that the

objects might not (and typically will not) be aware of all the property keys available in the graph. This

is not a problem, however, since a non-existent property key is treated as an undefined property. The

comparisons are done using all the property keys of the two compared objects combined. Any other

property keys are, therefore, undefined for both of the objects, thus equal.

generateAllMoreGeneral is an operation that produces the set of all more general properties descrip-

tions, as defined in Definition 4.34. It is a recursive function; on each level of the recursion, a property

constraint is replaced by a wildcard. The base case, and thus terminating condition, occurs when all

properties have been mapped to a wildcard, i.e., no further generalisation is possible. This method is

used when performing the cache compacting operation. Whilst the cache knows about all its cached

relationship counts, a single relationship description does not have this visibility. Therefore, it might

5.2. Relationship Count Module 69

Figure 5.16: Cacheable Properties Description, Related Classes, and Supporting Framework Classes

70 Chapter 5. Implementation

be unaware of some properties that are present on other relationships of the same type in the cache.

Consequently, in order to be able to generalise these properties, the generateAllMoreGeneral takes an

additionalKeys argument, which the caller uses to make the object aware of other known property

keys that it should use for generalisation. Listing 5.2 shows the Java implementation of this generali-

sation.

Very similar class hierarchy, presented in Figure 5.17 (this time without framework support) is used for

cacheable relationship representations.

Figure 5.17: Cacheable Relationship Description and Related Classes

Query Representations Relationship and properties descriptions, used for describing which relation-

ships to count, also called query representations, have different requirements from those used as cached

representations. First of all, they do not need to be self-generalising and as long as the cached represen-

tations can be compared to them (for general-to-specific ordering and mutual exclusion), these query

representations do not need to be mutually comparable in these respects. Secondly, whilst cached rela-

tionship representations are limited to constraining properties to a specific value or wildcard, the query

representations can, theoretically, specify any property constraint predicate.

In the interest of API simplicity, however, an artificial constraint has been imposed on these predicates

in the sense that they can also only take on a concrete value, or a wildcard. However, no aspect of the

framework’s or this module’s architecture prevents this constraint from being lifted in future versions.

5.2. Relationship Count Module 71

� �
public Set <CacheablePropertiesDescription > generateAllMoreGeneral(

Collection <String > additionalKeys) {

Set <CacheablePropertiesDescription > result
= generateAllMoreGeneral(this , additionalKeys);

result.remove(this);
return result;

}

private Set <CacheablePropertiesDescription > generateAllMoreGeneral(
CacheablePropertiesDescription properties ,
Collection <String > additionalKeys) {

Set <String > nonWildcardKeys
= nonWildcardKeys(properties , additionalKeys);

Set <CacheablePropertiesDescription > result = new HashSet <>();
result.add(properties);

//base case
if (nonWildcardKeys.isEmpty ()) {

return result;
}

// recursion
for (String key : nonWildcardKeys) {

result.addAll(generateAllMoreGeneral(
properties.with(key , ANY_VALUE),
additionalKeys));

}

return result;
}

private Set <String > nonWildcardKeys(
CacheablePropertiesDescription properties ,
Collection <String > additionalKeys) {

Set <String > result = new HashSet <>();

for (String key : properties.keySet ()) {
if (! ANY_VALUE.equals(properties.get(key))) {

result.add(key);
}

}

for (String key : additionalKeys) {
if (! properties.containsKey(key)) {

result.add(key);
}

}

return result;
}� �

Listing 5.2: Recursive Property Description Generalisation

72 Chapter 5. Implementation

Another API simplification has been introduced as a part of this design. Consider the following question:

how many INCOMING relationships of type RATED with property rating equal to 2 does a node have?

There are two ways to interpret this question and, thus, two programmatic representations thereof. The

question could be asking for relationships with rating equal to 2 and not care about other properties

these relationships might have. It could also be asking for relationships with just the rating equal to

2 and all other properties undefined. To support this dichotomy and to prevent the need for explicit

specification of all other properties’ values for one or the other kind of query, two types of relationship

(and thus also property) query descriptions have been designed; literal query descriptions and wildcard

query descriptions, all shown in Figure 5.18. Literal query descriptions behave as if every property,

which has not been explicitly constrained, is constrained to undefined. Wildcard descriptions, on the

other hand, treat these unspecified properties as wildcards.

Figure 5.18: Relationship and Property Query Descriptions

5.2.2 Additional Strategies

Two additional strategies have been designed and used throughout the Relationship Count Module, in

order to give its users more flexibility. Both are shown in Figure 5.19.

Properties Extraction Strategy Imagine a scenario where each node, which represents a user in

a hypothetical movie rating application, has a gender property that takes on the values "Male" and

"Female". Assume further that users can rate movies, which is represented by a RATED relationship

from a user node to a movie node. In such a system, it would not be an unreasonable requirement

to count incoming RATED relationships for a movie node based on the gender of the originating node

in order to find out, how much the movie appeals to men and women. For this reason, an interface

called RelationshipPropertiesExtractionStrategy has been created. It allows for custom logic

5.2. Relationship Count Module 73

Figure 5.19: Additional Strategies for Relationship Count Module

that determines properties on relationships. Not only can it be used to exclude certain properties,

based on the relationship type, for instance, but it can also be used to derive properties that are not

actually present on the relationship. The movie example in this paragraph could thus be solved by

deriving a gender property for RATED relationships by looking at the gender of the originating node.

Such a derived property would then never appear on the relationship itself, but for the purposes of

caching the relationships counts, it would be treated as an existing property6. The provided default

implementation, ExtractAllRelationshipProperties, simply returns each relationship’s properties

as they are.

Relationship Weighing Strategy We mentioned before that there are different ways of modelling

the same domain as a property graph. Consider, for example, modelling multiple interactions of the

same kind between two nodes. One way would be creating a separate relationship for each interaction;

the other way would be maintaining a property on a single relationship, indicating the number of

interactions. For cases modelled using the latter option, RelationshipWeighingStrategy is provided.

Whilst the default implementation, OneForEachRelationship, gives each relationship a weight of 1

(thus it is counted as one relationship), other implementations could determine the weight by looking

at a specific relationship property.

Consider another use case, where friendship is modelled as a FRIEND_OF relationship with a strength

property taking on values 1 to 10. To find the average friendship strength for a node, one could

6such a property would have to be fixed for the lifetime of the node though, because changes to node properties are not
handled by the module; this is a limitation

74 Chapter 5. Implementation

be caching these relationships with two instances of the Relationship Count Module; one counting

each relationship as one, and the other taking the strength property as the number of relationships.

Computing the average would then involve reading two properties of a node and dividing their values.

5.2.3 Degree Caching Node

We now develop the cache, defined in Chapter 4 in Definition 4.29, and the compaction operation

outlined in Algorithm 4.1, encapsulated in a representation of a node that is capable of caching its rela-

tionship counts. It is called RelationshipCountCachingNode and it is presented, along with its full (as

opposed to simple property-ignoring) implementation called FullRelationshipCountCachingNode, in

Figure 5.20.

Figure 5.20: Relationship Count Caching Node

Full Relationship Count Caching Node The class holds a reference to the Neo4j node for which it

caches relationship counts. On top of that, it provides three basic operations for manipulating these

cached counts. First, using the getCachedCounts method, it is able to return all relationship counts

cached as properties on the node, directly corresponding to cached degrees from Definition 4.29, as a

5.2. Relationship Count Module 75

map of relationship descriptions to integer counts. It is also capable of incrementing and decrementing

the cached count of a relationship with a given description by a given integer, using the incrementCount

and decrementCount methods, respectively.

When decrementing a count for a relationship description, typed as CacheableRelationshipDescription,

a cached count for that description is found, such that the cache relationship description is more spe-

cific or equal to the provided relationship description. The value of the cached count for the description

is then decremented. If the value happens to be zero afterwards, the entire cached count is removed,

i.e., the node property is deleted. If the value falls under zero, or no cached count to decrement can be

found, a NeedsInitializationException is thrown, because it means the module’s metadata is out of

sync.

Similarly, when incrementing a count for a relationship description, a more specific or equal cached

count for that description is found and its value incremented. If no suitable cached count exists, a

node property is created, where its key is the string representation of the provided relationship descrip-

tion and its value is the number by which the count should have been incremented (the integer delta

argument). When a new property has been created, there is a chance that there are more cached rela-

tionship counts than dictated by the compaction threshold. Therefore, RelationshipCountCompactor

is asked to compactRelationshipCounts. The compaction threshold is encapsulated in the

RelationshipCountStrategies class and is 20 by default.

Before discussing compaction in detail, we briefly explain a performance optimisation performed on

BaseRelationshipCountCachingNode. It has been found during performance testing and profiling

that updating properties on Neo4j nodes takes a relatively long time. In fact, during initial testing with

no optimisations, over 80% of the CPU time was spent getting nodes’ properties from Neo4j, when

inserting data with GraphAware Framework running and Relationship Count Module registered. This

inefficiency has been solved by a number of optimisations, including the following.

BaseRelationshipCountCachingNode loads the properties from the underlying Neo4j node only once

and keeps the relevant ones as cachedCounts. It also keeps the changes to these as updatedCounts and

removedCounts. The flush method copies the created and updated properties back to the underlying

node and removes the ones that should be removed. Unchanged properties are left untouched. This

way, the object can be referenced for the duration of a transaction event handling and only flushed at

the end, minimising database access.

Compaction The compaction algorithm, as shown in Algorithm 4.1 and the Property Change Fre-

quency function from Definition 4.52 have been implemented using the set of classes shown in Figure

5.21. ThresholdBasedRelationshipCountCompactor is instantiated and provided with the config-

76 Chapter 5. Implementation

urable compactionThreshold; every time it is asked to perform compaction, it first checks whether it

is at all needed. If that is the case, it uses a GeneralizationStrategy to produce all generalisations of

all cached counts, ordered from best to worst. The only provided implementation,

PropertyChangeFrequencyBasedGeneralizationStrategy does so by implementing the Property Change

Frequency function from Definition 4.52, using the informational value from Definition 4.48 as a score

for its ScoredCompactibleRelationship inner class, a wrapper of CacheableRelationshipDescription.

The compactor takes the first CacheableRelationshipDescription (i.e., the one with the highest

score) that results in actual cache compaction and uses it for that purpose. After the compaction, it

checks again, whether the total number of cached counts is now below or at the desired threshold. If

not, the process is repeated. In case no compaction can be performed and the threshold still has not

been reached, a meaningful warning is logged. This situation means that the threshold is not greater

than twice the number of relationship types in the system, as proven in Theorem 4.35.

Figure 5.21: Relationship Count Compactor

5.2.4 Full Relationship Count Module

Degree Cache A global representation of the degree cache is depicted in Figure 5.22. Its responsi-

bility is to handle created and deleted Neo4j relationships for a node during transaction event han-

dling. It creates a CacheableRelationshipDescription based on the RelationshipCountStrategies

it has been configured with. These include framework InclusionStrategies as well as module-

5.2. Relationship Count Module 77

specific strategies, discussed earlier, and the compaction threshold. Next, it obtains an instance of

RelationshipCountCachingNode, either from its own cache, or by creating it, and increments or decre-

ments the relationship counts on it.

BaseRelationshipCountCache has its own caching mechanism for RelationshipCountCachingNodes,

which is initialised when startCaching is invoked on it, and later flushed by flushing each individual

RelationshipCountCachingNode, when endCaching is called. This way, if there are multiple relation-

ships created/deleted for a single node in the same transaction, which is not uncommon, the node and

its properties only get read and written back once from/to the database. Since a single transaction is

committed (and its transaction events handled) by a single thread, this caching is performed against

ThreadLocal.

Figure 5.22: Relationship Count Cache

Module Finally, the FullRelationshipCountModule, shown in its surrounding context in Figure 5.23,

receives information about transaction events from the framework as ImprovedTransactionData and

uses the FullRelationshipCountCache to handle that information. For created relationships, it calls

the handleCreatedRelationship method on the cache twice; once for each node participating in the

78 Chapter 5. Implementation

relationship. The same is true for deleted relationships and the handleDeletedRelationship method.

Changed relationships are treated as if the old version of the relationship was deleted, and the new one

created, thus resulting in a total of four cache calls.

Note that the handleCreatedRelationship and handleDeletedRelationship methods on the

RelationshipCountCache take three arguments: the relationship that has been created/deleted, the

node from whose pointOfView the relationship is being handled, and a defaultDirection, which is

only used in case the relationship is a loop. When handling a relationship, the

FullRelationshipCountModule calls the appropriate method twice, as mentioned above, once with

INCOMING and once with OUTGOING defaultDirection. This way, if the relationship is a loop, it gets

accounted for as incoming and outgoing, as established in Theorem 4.25.

Figure 5.23: Full Relationship Count Module

5.2.5 Degree Counting Nodes

Even without any caching at all, we now have a convenient API for describing a relationship count

query. Therefore, we introduce the notion of RelationshipCountingNode, a representation of a node

capable of determining its own degree, based on a provided relationship query description. The hier-

archy stemming from this representation is presented in Figure 5.24.

Naive Counting Given a RelationshipQueryDescription, the FullNaiveRelationshipCountNode

can count relationships without any caching at all, by traversing and inspecting every single one of the

node’s relationships. For this reason, it needs to be aware of the RelationshipWeighingStrategy and

5.2. Relationship Count Module 79

Figure 5.24: Relationship Counting Nodes

RelationshipPropertiesExtractionStrategy, which can be passed into its constructor.

Cache-Based Counting FullCachedRelationshipCountingNode, on the other hand, reads the rela-

tionship counts from the cached properties on the node, in the form of

CacheableRelationshipDescription and associated integer count. According to Definition 4.37,

there are situations where the count cannot be determined this way, because the compaction process has

taken away the granularity needed for answering such a query. In this case, an UnableToCountException

is thrown.

5.2.6 Public API

The purpose of the Relationship Count Module is not only to serve as an implementation of the the-

ory from Chapter 4, but also to become a software component available for developers that work

with Neo4j. For that reason, the API should be as simple and intuitive as possible. Hence, a pub-

lic API layer has been designed, the implementation of which orchestrates the caching and counting

processes described above. This API consists of the FullRelationshipCountModule itself, and a set

of RelationshipCounters. A more detailed description of the API is provided in the User Guide in

Appendix C, while a full description is provided by the JavaDoc, attached to the source code. The

following paragraphs only describe the basics.

80 Chapter 5. Implementation

� �
// standard way to instantiate the database
GraphDatabaseService database

= new GraphDatabaseFactory ().newEmbeddedDatabase("path/to/db");

// create the framework
GraphAwareFramework framework = new GraphAwareFramework(database);

// create and register module
FullRelationshipCountModule module = new FullRelationshipCountModule ();
framework.registerModule(module);

//start the framework
framework.start();

//use database as usual� �
Listing 5.3: Using Full Relationship Count Module with GraphAware Framework

Relationship Count Module In order to use the Relationship Count Module with the framework with-

out modifying the default configuration, the framework has to be instantiated, the module registered,

and the framework started. Listing 5.3 shows this process in Java code.

Counting Relationships Once the module has been registered and the framework is running, three

different concrete implementations of RelationshipCounter can be used to count relationships. They

are shown in Figure 5.25. All of them provide a constructor, which is used to specify the type and direc-

tion of the relationships to be counted, and a fluent API to add property constraints for the relationships

to count using the with method, passing in the property key and value. Then, the count method can

be invoked, with a node as the only argument, returning the count of all relationships at that node,

which fulfil the specified criteria. Any properties not explicitly constrained are treated as “do not care",

i.e., as wildcards. The countLiterally method, on the other hand, counts relationships by treating

unspecified property constraints as undefined. This means they must not be present on a relationship

in order for it to be counted.

Instead of instantiating a RelationshipCounter directly, a convenient option of obtaining an instance

from the RelationshipCountModule is provided. The advantage of that approach is that the counter is

already pre-configured with all the strategies used by the module.

FullNaiveRelationshipCounter counts the relationships for a node in a naive fashion, i.e., does

not use any caching; it simply inspects every relationship and checks, whether it matches the speci-

fied criteria. FullCachingRelationshipCounter, on the other hand, uses the cached counts on the

node. In case the compaction process has taken away the needed granularity, this counter throws an

UnableToCountException. Finally, the FullFallingBackRelationshipCounter first attempts to count

relationship using the cached counts on a node, but falls back to the naive approach if

5.2. Relationship Count Module 81

Figure 5.25: Relationship Counters� �
// assume database and module from previous listing available
Node pulpFiction = database.getNodeById (123);
FullRelationshipCounter ratingOfTwoCounter

= module.cachedCounter(RATED , INCOMING).with("rating", 2);
ratingOfTwoCounter.count(pulpFiction); // returns the count� �

Listing 5.4: Using Full Cached Relationship Counter

UnableToCountException was thrown during the first attempt. Thus, it itself never throws the excep-

tion but always returns a count instead.

Listing 5.4 shows the usage of FullCachedRelationshipCounter for counting all incoming relation-

ships of type RATED with a property rating set to 2 for a node representing Pulp Fiction.

Listing 5.5 shows the usage of FullFallingBackRelationshipCounter for counting all incoming rela-

tionships of type RATED with a property rating set to 2 for a node representing Pulp Fiction, with no

other properties present on the relationship.

We conclude this chapter with a short summary. A framework for Neo4j, called GraphAware, has been

designed, implemented, and fully tested. It supports development of analytical modules that wish to

82 Chapter 5. Implementation

� �
Node pulpFiction = database.getNodeById (123);
FullRelationshipCounter ratingOfTwoCounter

= module.fallingBackCounter(RATED , INCOMING).with("rating", 2);
ratingOfTwoCounter.countLiterally(pulpFiction); // returns the count� �

Listing 5.5: Using Full Falling Back Relationship Counter

write metadata into the graph and keep them up to date. One such module, called Relationship Count

Module, has also been developed, in accordance with the theoretical analysis of the vertex degree

problem in Chapter 4. With a clean and simple API, both components can be readily used by software

developers.

Chapter 6

Evaluation

In this chapter, we evaluate the work presented thus far from a functional and performance perspective.

The following section describes the use of automated unit and integration tests for evaluating functional

correctness of the software. The subsequent section introduces performance tests, presents their setup,

testing methodology, and measurement results.

6.1 Functional Testing

It has been mentioned previously that the software has been developed in a test-driven fashion [3].

When developing new functionality, a specification is written in the form of executable code that asserts

the specification has been met, once the functionality has been implemented. Depending on its scope

and purpose, this programmatic specification is called a unit test or an integration test. These tests are

only as good as the developer that writes them; that is to say, they are not a formal proof of software

correctness. When an error is discovered later during further testing efforts (e.g. user acceptance

testing), a failing test that exposes the error is first written, followed by a fix of the error. All tests

written for the software are run automatically as a part of the build process and the build fails if any of

the assertions fail.

Automated unit and integration tests have been written for all the functionality of the GraphAware

Framework and the Relationship Count Module, covering as many scenarios as practically possible1.

Listing 6.1 shows an example of such a test: one of the tests verifying that a cacheable relationship

description can be correctly constructed from a string. Unit tests have descriptive method signatures, so

that is immediately clear what the test is meant to assert. To illustrate the extent to which the software

has been tested, Listing 6.2 presents all unit test method signatures for the GraphAwareFramework class.
1There are theoretically infinitely many test scenarios that can be written for all but the most trivial functionalities. It is a

part of the engineering process to find a pragmatic balance between exhaustive testing and the overall testing effort.

83

84 Chapter 6. Evaluation

� �
@Test
public void relationshipShouldBeCorrectlyConstructed () {

//null in the following indicates no prefix , "#" is the delimiter
CacheableRelationshipDescription desc

= new CacheableRelationshipDescriptionImpl(
"test#INCOMING#key1#value1#key2#value2", null , "#");

assertEquals(INCOMING , desc.getDirection ());
assertEquals("test", desc.getType ().name());
assertTrue(desc.getProperties ().containsKey("key1"));
assertTrue(desc.getProperties ().containsKey("key2"));
assertEquals("value1", desc.getProperties ().get("key1"));
assertEquals("value2", desc.getProperties ().get("key2"));
assertEquals (2, desc.getProperties ().size());

}� �
Listing 6.1: Example Unit Test for CacheableRelationshipDescriptionImpl

� �
shouldNotWorkOnDatabaseWithNoRootNode ()
moduleRegisteredForTheFirstTimeShouldBeInitialized ()
moduleAlreadyRegisteredShouldNotBeInitialized ()
changedModuleShouldBeReInitialized ()
forcedModuleShouldBeReInitialized ()
moduleAlreadyRegisteredShouldBeInitializedWhenForced ()
changedModuleShouldNotBeReInitializedWhenInitializationSkipped ()
shouldNotBeAbleToRegisterModuleWithTheSameIdTwice ()
unusedModulesShouldBeRemoved ()
usedCorruptModulesShouldThrowException ()
unusedCorruptModulesShouldBeRemoved ()
allRegisteredInterestedModulesShouldBeDelegatedTo ()
noRegisteredInterestedModulesShouldBeDelegatedToBeforeFrameworkStarts ()
moduleThrowingInitExceptionShouldBeMarkedForReinitialization ()
moduleThrowingInitExceptionShouldBeMarkedForReinitializationOnlyTheFirstTime ()
modulesCannotBeRegisteredAfterStart ()
frameworkCanOnlyBeStartedOnce ()
frameworkConfiguredModulesShouldBeConfigured ()
unConfiguredModuleShouldThrowException ()
shutdownShouldBeCalledBeforeShutdown ()
shouldNotBeAllowedToDeleteRootNode ()� �

Listing 6.2: Unit Test Method Signatures for GraphAwareFramework

6.2. Performance Testing 85

Of the 14,200 lines of Java code comprising the GraphAware Framework, 9,100 (64%) are automated

tests, exercising 92% of the main (i.e. non-test) codebase. The Relationship Count Module contains

a total of 7,400 lines of code, of which 5,100 (69%) are tests, covering 97% of the code. Most of the

untested lines are overloaded constructors and private constructors, used for preventing utility classes

with static methods from ever being instantiated, i.e., unreachable code.

6.2 Performance Testing

The purpose of the Relationship Count Module is to store metadata about the graph in the graph itself

and keep it up to date, so it can be retrieved faster at a later point in time. Caching relationship counts

will have an inevitable negative impact on the write throughput of the database, since extra information

is written to the database with each created, deleted, and changed relationship. On the other hand,

since counting relationships by inspecting them individually takes time linearly proportional to the

number of relationships, while reading the counts from cache requires constant time, we expect that

reading relationship counts from cache outperforms naive counting for vertices with relationship count

higher than some constant. Without any modules, we expect the framework itself to have no significant

impact on the write throughput of the database, since LazyTransactionData evaluates information

lazily, i.e., on demand, only when some module asks for the data. The aim of this section is to quantify

these performance implications.

6.2.1 Use of Caches

This subsection provides information about Neo4j’s caching mechanisms, an understanding of which is

essential for designing the performance testing experiments. Recall from Section 2.4 that there are two

levels of caching in the Neo4j architecture. The low level cache (or file system cache) caches the Neo4j

data stored on the durable media in the same format as it is represented on the media. The size of

this cache can be controlled by Neo4j configuration parameters and it is recommended that this cache

is large enough to fit all the Neo4j record files, if at all possible [21]. Recall further that it takes 9 B

for a node to be stored in this format. Therefore, one million nodes will only require approximately

8.6 MB of space in this cache, while a hundred million relationships would consume roughly 3 GB

(33 B each). Consequently, modern servers can be often configured to comfortably accommodate this

recommendation for many real-life graphs2.

The high level cache (or object cache), on the other hand, caches data as Java objects, optimised for

2This also heavily depends on the number of properties stored in the graph and their sizes. The information is presented
here as an illustration to be contrasted with the next level of caching.

86 Chapter 6. Evaluation

fast traversals [21]. The total memory required to store a single node in this cache, including its

object overhead, is 344 B. One million nodes would then require 328 MB, excluding any relationships

and properties. One hundred million relationships would require 19.4 GB (208 B each). Since this

memory requirement is much larger and cannot be accommodated for many graphs, Neo4j allows

for setting a cache eviction strategy for this high level cache. Once the heap allocated to the JVM

fills up with objects, some of them are evicted and subsequently garbage-collected by the JVM. The

garbage collection process is controlled exclusively by the JVM and apart from the actual garbage

collection algorithm, developers cannot influence the timing of the garbage collection process. This has

to be taken into account when creating a performance testing strategy, since pauses caused by garbage

collection, which could take significant amounts of time at irregular intervals, introduce an undesirable

element of non-determinism into the tests.

6.2.2 Experiment Design

One way to perform the measurements would be choosing a graph from a real-life application, finding

its mutation and query patterns, and writing a benchmarking suite that simulates these patterns. How-

ever, such benchmarks would be specific to the application, thus hard to generalise for other use cases.

Instead, we design our experiments to evaluate a single measure at a time, whilst varying a parameter

or a set of parameters to understand their impact on the measure. Using the knowledge of Neo4j,

the GraphAware Framework and the Relationship Count Module built up throughout this report, we

discern meaningful measures and parameters.

Write Throughput From the design of the Relationship Count Module, it is clear that creating, delet-

ing, and changing relationships will be slower when the module is running, compared to using a “plain”

database, i.e., Neo4j without the framework. Since the Relationship Count Module ignores any vertex

mutations, they are also ignored for the purposes of this evaluation. Furthermore, we do not place any

emphasis on the total number of vertices in the graph, a parameter that would be quite important for

many other benchmarks. The rationale behind that decision is the fact that relationship counting is

local to a vertex, no matter which way it is performed.

Since every mutating operation on the graph is written to disk, we disable both low level and high

level caching for write throughput tests, in order to eliminate as much non-determinism as possible.

However, some variance in measurements, caused by the operating system and non-uniform disk access

times, will be inevitable.

6.2. Performance Testing 87

We are interested in measuring how much longer it takes to create, delete, or change3 a relation-

ship when relationship counts are being cached. Depending on the use case, different numbers of

relationships will be created, deleted, or changed within a single transaction. For instance, creating a

friendship in a social network would create a single relationship in a single transaction. On the other

hand, creating a new airport (node) and all the routes from and to that airport (relationships) in a

travel planning application would create hundreds or thousands of relationships in a single transac-

tion. Therefore, we vary the number of relationships created/deleted/changed in a transaction as a

parameter when evaluating write performance.

The presence of relationship properties, their number, and their values have write performance impli-

cations for relationship mutations in both scenarios: with and without the Relationship Count Module.

When creating a relationship with properties, the property store has to be accessed, which is not the

case when creating property-less relationships. Additionally, with the Relationship Count Module up

and running, the compaction process could be triggered by a created relationship, degrading perfor-

mance even further. Hence, we also vary the number of relationship properties and their value change

frequency as a parameter when measuring write performance.

Read Throughput Since the theoretical time complexity of naive (plain database) relationship count-

ing is linearly proportional to the actual number of relationships, one variable parameter for vertex

degree query performance evaluation is the average number of relationships per vertex.

Another important parameter for read throughput measurements is whether the data being accessed is

on disk or in one of the caches. Therefore, we perform three kinds of read throughput measurements.

First, we run the measurements with both caches disabled. Second, we enable the file system cache,

size it correctly so that the entire graph fits into it, and “warm it up” by running the experiment 100 -

10,000 times4 before actually starting the measured runs. Similarly, we turn on the high level cache for

the third kind of measurement, configure it to use “strong” caching policy that never evicts any cached

objects, and set the maximum heap size to fit the entire graph in Java-object form. Again, we first warm

up the cache before starting any measurements.

Finally, as in the case of write throughput measurements, we vary the number of relationship properties

and their change frequency.

Space Requirement Additional space required by the database on disk and in memory due to the

relationship count caching depends on a number of factors, particularly the compaction threshold, i.e.,

3we perform no explicit benchmarking on changed relationships, because the penalties would be equivalent to the sum of
create and delete penalties

4depending on the kind of experiment

88 Chapter 6. Evaluation

how many extra properties are allowed to be written to each node, the distribution of vertex degrees

across the nodes, and the number and change frequency of relationship properties. Without knowing

these graph characteristics, it is difficult to estimate the space requirement. If known, however, the

additional space requirement can be determined analytically. Hence, we perform no space-related

measurements.

Hardware All experiments have been performed on a Mid-2012 MacBook Air running Mac OS X

10.8.4 with 2GHz Quad-Core Intel Core i7 processor, 8 GB RAM, and an SSD hard drive.

Methodology We have established that the total number of vertices in the graph is not relevant for

any of these measurements. Therefore, the number of vertices has been selected so that the total

runtime of the tests is long enough to provide a good resolution, but short enough to finish each test

in a few minutes. Hence, write and read throughput measurements were performed on graphs with 10

and 100 vertices, respectively.

After caches had been warmed up (if applicable), every write throughput measurement was performed

20 times and every read throughput measurement 100 times5. Runtimes were measured in microsec-

onds and are reported as mean values in milliseconds, plus or minus one standard deviation. When

comparing two scenarios and reporting a ratio (sometimes as a percentage) of their runtimes, the first

run of the first scenario is compared to the first run of the second scenario, second run of the first

scenario to the second run of the second scenario, and so on, until the last runs of both scenarios.

The result is then the mean of the ratios (percentages), plus or minus one standard deviation. All raw

measurement data have been submitted together with the code6.

6.2.3 Simple Relationship Counting

In the first experiment, the time taken to create 10,000 relationships between random pairs of nodes

was measured. None of the relationships had any properties. Figure 6.1 shows a plot of the measured

times with log-scaled axes for four different scenarios. The first scenario (purple) shows times taken

when using Neo4j without the GraphAware Framework. For the second one (red), the framework

was running without any modules. The third one (green) shows the framework running with the

SimpleRelationshipCountModule and the last one (blue) with FullRelationshipCountModule.

A number of observations can be made about this plot. First of all, according to expectations, the

framework running without any modules adds very little overhead. Secondly, since relationships have

5since reads typically have shorter runtimes
6/neo4j-relcount/src/test/resources/perf

6.2. Performance Testing 89

Figure 6.1: Relationship Write Performance (No Properties on Relationships)

90 Chapter 6. Evaluation

no properties, there is a small difference between the two modules, i.e.„ the simple one that ignores

properties, and the full one that takes them into account. Finally, GraphAware Modules are adding

some amount of overhead when creating relationships, as expected, because they create properties

on nodes. Table 6.1 shows the mean runtimes in milliseconds and Table 6.2 quantifies the overhead

by showing the throughput (relationships created per unit of time) as a mean percentage of the full

throughput of a plain database. In the worst case, the throughput roughly halves.

Scenario:
Rels/Tx No Framework Empty Framework Simple Relcount Full Relcount

1 1782± 64 1822± 83 2168± 16 2255± 30
2 931± 24 969± 31 1232± 10 1322± 38
3 645± 10 676± 21 905± 13 982± 15
6 349± 11 377± 12 554± 11 606± 12

10 233± 8 262± 14 385± 6 433± 16
18 145± 6 162± 7 257± 7 293± 10
32 100± 7 114± 6 180± 10 215± 10
56 72± 6 88± 7 142± 12 156± 6

100 56± 6 72± 9 111± 7 124± 6
178 50± 5 66± 9 92± 9 105± 8
316 45± 7 56± 5 81± 6 93± 11
562 40± 6 54± 7 76± 9 86± 7

1000 39± 6 50± 5 75± 7 85± 10

Table 6.1: Times (ms) Taken to Create 10,000 Relationships with No Properties

Scenario:
Rels/Tx Empty Framework Simple Relcount Full Relcount

1 98%± 8% 82%± 3% 79%± 3%
2 96%± 5% 76%± 2% 70%± 3%
3 96%± 4% 71%± 1% 66%± 2%
6 93%± 5% 63%± 2% 58%± 2%

10 89%± 7% 60%± 2% 54%± 2%
18 90%± 6% 57%± 3% 50%± 2%
32 89%± 8% 56%± 4% 47%± 3%
56 83%± 12% 51%± 6% 46%± 4%

100 79%± 12% 51%± 7% 46%± 6%
178 77%± 13% 55%± 8% 48%± 5%
316 81%± 18% 56%± 10% 49%± 8%
562 76%± 19% 54%± 9% 48%± 8%

1000 79%± 17% 53%± 9% 47%± 9%

Table 6.2: Throughput when Creating Relationships with No Properties, as a Percentage of Full
Throughput

Tables 6.3 and 6.4 show the same experiment for deleting relationships. A plot of this data would

have very similar characteristics to the previous one. When deleting relationships, the overhead of the

6.2. Performance Testing 91

modules is slightly larger than the overhead when creating relationships.

Scenario:
Rels/Tx No Framework Simple Relcount Full Relcount

1 1824± 176 2437± 17 2516± 17
2 951± 59 1455± 44 1504± 10
3 671± 42 1081± 11 1155± 27
6 360± 18 681± 14 734± 21

10 232± 14 477± 20 521± 12
18 141± 5 330± 10 373± 15
32 94± 4 232± 15 254± 7
56 72± 9 162± 3 183± 8

100 55± 3 121± 2 140± 7
178 49± 3 99± 4 115± 8
316 45± 6 84± 2 97± 8
562 43± 9 76± 2 89± 5

1000 40± 8 72± 5 84± 7

Table 6.3: Times (ms) Taken to Delete 10,000 Relationships with No Properties

Scenario:
Rels/Tx Simple Relcount Full Relcount

1 75%± 7% 73%± 7%
2 65%± 5% 63%± 4%
3 62%± 4% 58%± 4%
6 53%± 3% 49%± 3%

10 49%± 3% 45%± 3%
18 43%± 2% 38%± 2%
32 41%± 2% 37%± 2%
56 45%± 5% 40%± 5%

100 45%± 3% 39%± 3%
178 49%± 3% 43%± 4%
316 53%± 8% 46%± 8%
562 57%± 11% 49%± 10%

1000 56%± 12% 48%± 10%

Table 6.4: Throughput when Deleting Relationships with No Properties, as a Percentage of Full
Throughput

In the next experiment, graphs with 10 to 10,000 relationships per node (two different types, no

properties) have been created. The times taken to find vertex degrees of 10 randomly selected vertices

for a single relationship type have been measured with no caching, low level cache enabled, and high

level cache enabled. They are plotted in Figure 6.2. Since there are no properties on relationships

SimpleRelationshipCountModule has been used. As expected, performance of the module is close to

constant, whilst the performance of naive counting is nearly linear. Table 6.5 quantifies how much

faster (in vertex degree calculations per unit of time) the database is with the module running. For

92 Chapter 6. Evaluation

instance, degrees of nodes with 1,000 relationships can be computed approximately 126 times faster

when data is on disk, but only 6 times faster when in the high level cache. Note that when data is not

in the high level cache, vertex degree analysis using the Relationship Count Module is always faster

than the naive approach. On the other hand, counting relationships for vertices with fewer than 100

relationships, when data is in high level cache, is more efficient using the naive approach.

Figure 6.2: Vertex Degree Read Performance (No Properties on Relationships)

6.2. Performance Testing 93

Caching:
Avg Degree: No Cache Low Level High Level

10 1.29± 0.33 2.89± 0.77 0.25± 0.17
17 2.13± 0.49 1.98± 0.69 0.53± 1.48
31 3.24± 0.83 2.60± 5.78 0.57± 0.22
56 7.75± 1.80 6.53± 1.88 0.96± 0.23

100 12.98± 2.83 6.31± 2.30 1.03± 0.37
177 23.37± 5.44 14.44± 4.82 1.62± 1.49
316 31.15± 5.54 30.90± 9.77 2.07± 0.44
562 68.73± 16.67 45.86± 12.91 3.79± 1.10

1000 126.44± 24.69 96.75± 17.35 6.45± 2.56
1778 141.05± 33.46 176.06± 28.43 10.85± 5.08
3162 311.88± 44.67 346.88± 77.35 16.79± 5.96
5623 642.91± 178.30 573.44± 97.58 34.36± 8.30

10000 985.82± 251.90 955.44± 204.24 51.18± 11.22

Table 6.5: Read Performance as a Speedup Factor, No Properties on Relationships

6.2.4 Full Relationship Counting

Let us now turn our attention to relationships with properties. To measure the write throughput

penalty, we repeated the experiments from previous section three more times. On the first repetition,

every relationship has two properties, both of which only take on two different values. Since there

are two relationship types and two directions, the total number of unique relationship descriptions is

2x2x2x2 = 16, whilst the compaction threshold is 20. Therefore, no compaction takes place. Second,

every relationship has two properties, one of which takes on two different values, whilst the other one

changes for every relationship. Therefore, compaction will occur. Finally, every relationship has four

different properties, one of which takes on four different values, whilst the other three change for every

relationship. Where GraphAware Framework is used, it is with FullRelationshipCountModule.

No Compaction Figure 6.3 and Tables 6.6 and 6.7 show the write throughput when relationship

properties are involved, but no compaction occurs. In the worst case, the write throughput drops to

about a fifth of its original value.

94 Chapter 6. Evaluation

Figure 6.3: Relationship Write Performance (Two Properties on Relationships, No Compaction)

6.2. Performance Testing 95

Scenario:
Rels/Tx No Framework Full Relcount

1 1866± 55 3944± 104
2 997± 23 2962± 40
3 705± 16 2528± 14
6 405± 18 1793± 12

10 284± 10 1350± 15
18 195± 10 913± 13
32 146± 12 626± 9
56 119± 9 456± 10

100 109± 13 358± 40
178 95± 7 286± 9
316 93± 14 245± 16
562 82± 7 221± 13

1000 86± 6 211± 14

Table 6.6: Times (ms) Taken to Create 10,000 Relationships, Two Properties Each, No Compaction

Scenario:
Rels/Tx Full Relcount

1 47%± 2%
2 34%± 1%
3 28%± 1%
6 23%± 1%

10 21%± 1%
18 21%± 1%
32 23%± 2%
56 26%± 2%

100 31%± 4%
178 33%± 2%
316 38%± 6%
562 37%± 4%

1000 41%± 4%

Table 6.7: Throughput when Creating Relationships with Two Properties (No Compaction), as a Per-
centage of Full Throughput

Compaction When compaction takes place, the throughput suffers even more. With increasing num-

ber of relationship properties, write throughput further decreases, due to compaction. Figure 6.4 illus-

trates the performance when creating 1,000 relationships. In scenario A, the framework is not running

and each relationship has two properties, whilst in scenario B, each relationship has four properties.

Scenarios C and D measure the creation of the first 1,000 and the next 1,000 relationships, respectively,

where each relationship has two properties and the Full Relationship Count Module is running. Finally,

each relationship has four properties in scenarios E and F, again measuring the creation of the first

thousand and the second thousand relationships.

96 Chapter 6. Evaluation

Figure 6.4: Relationship Write Performance (Properties on Relationships, with Compaction)

6.2. Performance Testing 97

It is apparent from Figure 6.4 that compaction causes significant performance degradation. However,

once the system is in a “steady state", i.e., all the frequently changing properties have been compacted

out from cached relationship counts, the write throughput increases again to the levels experienced in

no-compaction scenarios. Tables 6.8 and 6.9 show the measurements for these experiments. In the

absolute worst case, creating first 1,000 relationships with four properties each, three of which are

changing all the time, can be about 30 times slower when running the Relationship Count Module,

compared to a plain database. However, once in a steady state, the throughput is again up to a fifth of

its original value.

Scenario:
Rels/Tx A B C D E F

1 188.8± 17.1 184.9± 6.9 544.1± 64.9 443.9± 62.5 1059.3± 81.0 482.1± 45.3
2 101.8± 8.3 101.6± 5.2 417.9± 32.9 336.2± 27.4 910.4± 46.3 381.7± 44.4
3 69.5± 6.0 77.0± 8.3 363.3± 30.8 276.6± 12.6 830.5± 27.9 311.5± 24.2
6 40.0± 2.4 45.1± 6.2 276.5± 26.2 196.1± 11.6 736.2± 27.4 228.4± 22.7

10 26.7± 2.1 32.4± 3.7 208.8± 9.9 154.2± 10.4 675.9± 20.9 166.4± 13.9
18 19.2± 5.2 27.0± 7.2 159.4± 11.5 101.6± 9.4 618.8± 23.1 118.0± 11.5
32 13.9± 1.3 20.6± 3.6 124.8± 7.5 71.7± 8.1 579.9± 16.2 87.9± 17.5
56 11.8± 3.2 18.1± 4.9 103.0± 10.4 49.7± 5.5 552.2± 25.7 64.9± 9.3

100 10.1± 2.5 16.0± 4.5 81.7± 6.5 37.1± 4.9 535.5± 22.7 46.7± 6.9
178 9.8± 5.5 15.8± 4.2 72.1± 8.9 30.3± 3.8 514.1± 30.9 43.2± 8.9
316 8.2± 0.8 15.1± 4.7 63.4± 6.4 26.2± 2.8 505.0± 15.1 36.8± 7.5
562 7.7± 1.2 13.8± 4.0 56.5± 5.8 22.5± 3.3 497.6± 25.0 31.5± 4.0

1000 8.1± 1.9 14.7± 3.2 55.0± 8.1 22.4± 5.8 497.9± 43.7 30.3± 6.6

Table 6.8: Times (ms) Taken to Create 1,000 Relationships, with Compaction

Scenario:
Rels/Tx C D E F

1 34.9%± 3.0% 43.1%± 5.0% 17.5%± 1.1% 38.6%± 3.1%
2 24.4%± 1.5% 30.4%± 2.5% 11.2%± 0.7% 26.9%± 2.9%
3 19.2%± 1.9% 25.2%± 2.0% 9.3%± 1.1% 24.9%± 3.6%
6 14.5%± 1.0% 20.4%± 1.5% 6.1%± 0.9% 20.0%± 3.6%

10 12.8%± 0.9% 17.4%± 1.6% 4.8%± 0.6% 19.6%± 2.8%
18 12.0%± 2.8% 19.0%± 5.4% 4.4%± 1.2% 23.3%± 7.4%
32 11.2%± 0.9% 19.7%± 2.5% 3.5%± 0.6% 24.0%± 4.9%
56 11.6%± 3.2% 24.0%± 6.9% 3.3%± 1.0% 28.5%± 9.3%

100 12.4%± 3.1% 27.5%± 6.9% 3.0%± 0.9% 35.0%± 11.5%
178 14.0%± 9.2% 32.9%± 20.2% 3.1%± 0.8% 37.9%± 11.7%
316 13.0%± 2.0% 31.4%± 3.9% 3.0%± 1.0% 42.6%± 17.0%
562 13.9%± 2.7% 34.7%± 4.4% 2.8%± 0.9% 44.2%± 12.0%

1000 14.9%± 3.4% 37.0%± 7.9% 3.0%± 0.7% 50.2%± 13.6%

Table 6.9: Throughput when Creating Relationships with Compaction, as a Percentage of Full Through-
put

98 Chapter 6. Evaluation

Software performance optimisation is a long process; once a bottleneck is removed, another one ap-

pears. After we have optimised the database access, compaction clearly became the bottleneck, accord-

ing to the profiler and the experiment presented above. The main reason for this is the fact that for

a relationship with x different properties, there are 2x more general or equal representations than its

most specific representation, all of which are generated first, before being scored. This is one area of the

software that could potentially be improved from performance point of view by employing some kind

of score-based heuristic and only generating a few generalisations. Another way to avoid performance

problems is using a custom RelationshipPropertyInclusionStrategy and excluding properties that

are known to be frequently changing from the caching process altogether, treating compaction only as

a safety mechanism for keeping the number of node properties low.

Finally, let us take a look at the performance benefits of the Full Relationship Count Module when

analysing vertex degrees, a plot of which is presented in Figure 6.5. Table 6.10 shows the speedup

factors.

Figure 6.5: Vertex Degree Read Performance (Two Properties on Relationships)

6.2. Performance Testing 99

Caching:
Avg Degree No Cache Low Level High Level

10 1.25± 0.37 0.23± 0.12 0.07± 0.03
17 1.16± 0.36 0.30± 0.11 0.06± 0.03
31 1.39± 0.36 0.40± 0.16 0.15± 0.15
56 2.27± 0.39 0.60± 0.14 0.10± 0.02

100 4.50± 0.87 1.07± 0.33 0.17± 0.04
177 8.67± 1.28 2.39± 0.76 0.42± 0.09
316 15.70± 1.99 4.39± 1.55 1.11± 0.19
562 27.50± 3.98 8.16± 1.65 2.41± 0.56

1000 50.09± 6.17 13.10± 3.44 4.50± 1.09
1778 88.97± 13.81 26.49± 4.92 9.34± 1.87
3162 160.99± 19.13 49.25± 6.77 15.58± 2.65
5623 277.84± 34.43 88.58± 9.81 33.73± 3.41

10000 487.95± 73.04 153.82± 25.17 60.53± 8.25

Table 6.10: Read Performance as a Speedup Factor, Two Properties on Relationships

When the entire graph is in high level cache, the Relationship Count Module only outperforms naive

counting for vertices with more than 300 relationships. For vertices with 10,000 relationships, the

count can be 60 times faster. The real benefit of relationship count caching is shown in scenarios where

the graph does not fit into the object cache. Reading the cached counts starts to be faster than the naive

approach around the 100 mark and for a vertex with 1,000 relationships, it is 13 times faster.

Furthermore, in a real life application with high level cache enabled but not large enough to fit the

entire graph, counting relationships by traversing all of them will generate a lot of garbage collection

overhead, since each traversed relationship becomes a cached Java object. When using cached counts,

however, this will not be the case, since no relationships are actually traversed. This could result in

significantly higher performance improvements than the ones presented here, measured in artificially

set up testing conditions that intentionally avoid any garbage collection.

Finally, the number of read operations in many Neo4j applications will be very large, compared to the

number of write operations, rendering read performance improvements much more important than

write throughput penalties.

Chapter 7

Conclusion and Future Work

7.1 Achievements

This project introduces the problem of online analytical processing in OLTP graph databases that use the

property graph data model and reviews existing related work, which is relatively scarce. A seemingly

simple problem, analysing vertex degrees in a property graph, has been selected and its relevance

to other graph analytics has been described. The problem has been used to explore the challenge of

storing metadata about a changing property graph and keeping them up to date, a technique that might

be useful for other kinds of graph analytical problems.

Along the way, a number of definitions, theorems, and proofs have been created, exploring the problem

of vertex degree analysis in depth. Specifically, a formal definition of vertex degree in a property graph

has been introduced, followed by partial general-to-specific ordering of edge representations, a caching

operation, and a cache compaction operation, enabled by a heuristic based on the change frequency of

edge property values.

The architecture and implementation of Neo4j, an open-source OLTP property-graph database, have

been studied and described. Based on the aforementioned theoretical foundation, a software module

for Neo4j, called the Relationship Count Module, has then been developed from scratch in two flavours,

“simple” and “full".

Throughout the design and development process, generic functionality that could be useful to other

modules with similar purpose has been identified and implemented as the GraphAware Framework.

Consequently, the framework provides support for the Relationship Count Module as well as a conve-

nient starting point for future module developers.

Performance testing has shown that, depending on the specific use case and database usage patterns,

100

7.2. Applications 101

as little as 20% of the write throughput can be traded off for several orders of magnitude performance

increase when analysing vertex degrees. Furthermore, the work provides a starting point for theoretical

analysis and practical development of solutions to other graph database challenges. Finally, by demon-

strating the complexity of a seemingly simple problem and quantifying some of the achievements, it

serves as a small step on the long journey towards online analytical processing in graph databases.

Naturally, there are also a few limitations of the current implementation. First of all, as mentioned be-

fore, performance could always be improved. Whilst theoretically sound, self-generalising relationship

representations would benefit from an informed search through the space of generalisations during

compaction. Additionally, some design decisions have diminished the flexibility of the solution. For ex-

ample, relationships can only be cached based on a property being equal to certain value, not greater,

smaller, in a specific range, etc. Also, the solution does not provide a way to only count loops. Fi-

nally, for some use cases, the solution might be inappropriate altogether, especially due to the choice of

“sacrificing” most frequently changing properties first.

7.2 Applications

This project has resulted in a documented, fully tested and working, production-ready framework and

an easily customisable module with a clean and simple API, which can be applied to use cases that

require speedy vertex degree analysis, trading off some write throughput.

The framework also enables the development of other analytical modules as well as modules with

different purposes. For instance, it could be used by development teams to create domain-specific or

company-specific Neo4j extensions.

Finally, the framework can serve as a library of useful, tested code that can benefit any developer

working with Neo4j, since it provides functionality and APIs that often need to be written from scratch

when building software based on the graph database. Many of these routines get no attention in the

main body of the report, since they are straightforward implementations. They can, however, be used

to reduce development effort and the risk of errors. Hence, they are mentioned in Appendix B.

7.3 Future Work

Apart from already proposed potential improvements to the Relationship Count Module, the amount of

future work that can be based on this project is extensive.

102 Chapter 7. Conclusion and Future Work

In the analytics space, metadata-based operations on changing property graphs, such as roll-ups, drill-

downs, slicing and dicing could be analysed and prototyped. One path that has not been explored

and could well be undertaken is performing random walks on property graphs to approximate results

of certain analytical queries. The framework would have to be extended to support this functionality.

Also, to prevent write throughput penalties, one could investigate asynchronous metadata maintenance

outside of the main transactional processing.

Analytics aside, modules with other purposes could be written for the framework. An example could

be a "Temporal Graph Database", which never actually deletes any data, but marks them obsolete

with a timestamp. It could then provide temporal queries and/or historical graph analysis. Another

example of a useful module would be type and/or property-based relationship indexing module, which

would allow for fast random relationship selection and performant paging (offsets and limits) during

relationship traversals. Yet another module could provide the ability to define a graph schema and

enforce it by not allowing commits that result in schema violations.

All code written for this project is open-source and licensed under the GNU General Public Licence

(GPL). It is our aim to maintain, support, and improve the framework, so it continues to be useful for

graph database adopters. We invite interested individuals and teams to use it free of charge under GPL

and we welcome all contributions.

Bibliography

[1] G. Adzic. Specification by Example: How Successful Teams Deliver the Right Software. Manning

Pubs Co Series. Manning Publications Company, 2011. ISBN 9781617290084.

[2] David A Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approximating betweenness

centrality. In Proceedings of the 5th international conference on Algorithms and models for the web-

graph, WAW’07, pages 124–137, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-77003-8,

978-3-540-77003-9.

[3] K. Beck. Test-driven Development: By Example. Kent Beck signature book. Addison-Wesley, 2003.

ISBN 9780321146533.

[4] Ulrik Brandes. A faster algorithm for betweenness centrality*. The Journal of Mathematical

Sociology, 25(2):163–177, June 2001. ISSN 0022-250X. doi: 10.1080/0022250X.2001.9990249.

[5] Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic computation.

Social Networks, 30(2):136–145, May 2008. ISSN 03788733. doi: 10.1016/j.socnet.2007.11.001.

[6] Ulrik Brandes and Daniel Fleischer. Centrality measures based on current flow. In Proceedings

of the 22nd annual conference on Theoretical Aspects of Computer Science, STACS’05, pages 533–

544, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-24998-2, 978-3-540-24998-6. doi:

10.1007/978-3-540-31856-9_44.

[7] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. Graph OLAP: Towards Online

Analytical Processing on Graphs. In 2008 Eighth IEEE International Conference on Data Mining,

pages 103–112, Pisa, December 2008. IEEE. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.

2008.30.

[8] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM,

13(6):377–387, June 1970. ISSN 00010782. doi: 10.1145/362384.362685.

[9] TM Connolly and CE Begg. Database systems: a practical approach to design, implementation, and

management. Addison Wesley, 5 edition, 2005. ISBN 978-0321523068.

103

104 BIBLIOGRAPHY

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001. ISBN 0-262-03293-7,

9780262032933.

[11] Reinhard Diestel. Graph Theory {Graduate Texts in Mathematics; 173}. Springer, 3rd ed. edition,

2000. ISBN 978-3540261834.

[12] Martin Everett and Stephen P. Borgatti. Ego network betweenness. Social Networks, 27(1):31–38,

January 2005. ISSN 03788733. doi: 10.1016/j.socnet.2004.11.007.

[13] Linton C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1(3):

215–239, January 1978. ISSN 03788733. doi: 10.1016/0378-8733(78)90021-7.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of

reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1995. ISBN 0-201-63361-2.

[15] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approximation of betweenness

centrality. In J. Ian Munro and Dorothea Wagner, editors, ALENEX, pages 90–100. SIAM, 2008.

[16] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.

ISBN 0070428077, 9780070428072.

[17] M. Newman and M Girvan. Finding and evaluating community structure in networks. Physical

Review E, 69(2):026113, February 2004. ISSN 1539-3755. doi: 10.1103/PhysRevE.69.026113.

[18] Carlos Ordonez and Javier García-García. Evaluating join performance on relational database

systems. JCSE, 4(4):276–290, 2010.

[19] Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, SY Philip, and Hongyan Li. Efficient topological

OLAP on information networks. Database Systems for Advanced Applications, Volume Par:389–403,

2011. doi: 10.1007/978-3-642-20149-3_29.

[20] Matthew J. Rattigan, Marc Maier, and David Jensen. Using structure indices for efficient approxi-

mation of network properties. In Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD ’06, page 357, New York, New York, USA, 2006. ACM

Press. ISBN 1595933395. doi: 10.1145/1150402.1150443.

[21] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, Incorporated, 2013.

ISBN 9781449356262.

[22] P.J. Sadalage and M.J. Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence. Always learning. Addison Wesley Professional, 2012. ISBN 9780321826626.

BIBLIOGRAPHY 105

[23] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggregation for graph sum-

marization. In Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, SIGMOD ’08, pages 567–580, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6.

doi: 10.1145/1376616.1376675.

[24] JD Ullman, H Garcia-Molina, and J Widom. Database systems: the complete book. Prentice Hall, 2

edition, 2001. ISBN 978-0131873254.

[25] Scott White and Padhraic Smyth. Algorithms for estimating relative importance in networks. In

Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining - KDD ’03, KDD ’03, page 266, New York, New York, USA, 2003. ACM Press. ISBN

1581137370. doi: 10.1145/956750.956782.

[26] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube. In Proceedings of the 2011

international conference on Management of data - SIGMOD ’11, page 853, New York, New York,

USA, 2011. ACM Press. ISBN 9781450306614. doi: 10.1145/1989323.1989413.

Appendices

106

Appendix A

Symbols Reference

This appendix is an organised summary of symbols used throughout the report and informal explana-

tion thereof. It is here for readers’ convenience, especially as a reference for reading Chapter 4. Should

there be any ambiguity, the definitions in the main text shall be used.

α an attribute key, such that α ∈ A

A the set of attribute keys

β an attribute value, such that β ∈ B

B the set of attribute values

attr a total map C × A→ B, assigning every property container c ∈ C and an attribute

key α ∈ A a value β ∈ (B ∪ {UNDEF})

attrp a partial map C × A 7→ B, assigning a property container c ∈ C and an attribute

key α ∈ A a value β ∈ B, if defined for c and α.

c a property container (vertex or edge), such that c ∈ C

C the set of property containers, i.e., C = (V ∪ E)

COMPACT(K(v)) a cache compaction operation of cache K(v)

γ a predicate on an attribute value β , such that γ ∈ Γ and γ(β)→ {true, false}

Γ the set of predicates on property values of a property container c in a properties

description φ

d(v) the degree of vertex v, equivalent to |E(v)|

din(v) the indegree of vertex v, equivalent to |Ein(v)|

dout(v) the outdegree of vertex v, equivalent to |Eout(v)|

δ a partial map (E × V) 7→ (∆∪ {LOOP}), mapping each vertex and edge at that

vertex to a direction

δ(e, v) the direction of e from the point of view of v; it is one of (∆∪ {LOOP})

107

108 Chapter A. Symbols Reference

δψ an edge direction (one of {IN, OUT}) in a relationship description ψ

∆(e, v) the set of edge directions {IN, OUT}

e an edge, such that e ∈ E

E the set of edges of a graph G

E(v) the set of edges at a vertex v

Ein(v) the set of incoming edges at a vertex v

Eout(v) the set of outgoing edges at a vertex v

G a graph, i.e., a pair G = (V, E) (undirected) or G = (V, E, init, ter) (directed)

init a map E→ V , assigning every edge e ∈ E an initial (or start) vertex (or tail) v

init(e) the initial vertex of edge e

ι(K(v),ψ,α) informational value of a property with key α on a relationship description ψ

with respect to cache K(v)

ι(K(v),ψ) the informational value of a relationship description ψ with respect to cache K(v)

k cached vertex degree, such that k ∈ K(v) = (ψ ∈Ψ, n ∈ N)

K(v) vertex degree cache at vertex v

label a map E→ Λ, assigning every edge e ∈ E a label λ ∈ Λ

label(e) the label of edge e

λ an edge label, such that λ ∈ Λ

λψ an edge label λψ ∈ Λ in a relationship description ψ

Λ the set of edge labels

LOOP the direction of a relationship, which is a loop

matches(c,φ) a predicate meaning that the properties of property container c match

the properties description φ

matches(δ(e, v),δψ) a predicate meaning that the direction of edge e at vertex vmatches the direction

δψ of relationship description ψ

matches(e,φ) a predicate meaning that the properties of edge e match the properties

description φ

n a natural number n ∈ N (including 0), indicating the degree in a cached degree k

P a path through a graph

PCF Property Frequency Change function, used to sort Ψsg

Π(c) the set of key-value pairs assigned to a property container c; value can be UNDEF

φ a properties description; a map A→ Γ, assigning every attribute key α ∈ A

a predicate γ ∈ Γ

φmaxg the most general properties description

φmaxs(c) the most specific properties description for property container c ∈ C

Φ a set of properties descriptions

109

ψ a relationship description in the form ψ= (δψ,λψ,φ)

Ψ the set of all relationship descriptions

Ψg the generalisation set of Ψ

Ψsg the generalisation superset, i.e., a set of all Ψg for all Ψ in all k ∈ K(v)

ψmaxg(e, v) the most general relationship description for relationship e at node v

ψmaxs(e, v) the most specific relationship description for relationship e at node v

ρ(K(v),λ,α) number of distinct values of property α on relationship descriptions in cache K(v)

with type λ

ρavg(K(v),λ,α) average ρ across relationship descriptions in cache K(v) with type λ

τ compaction threshold for cache compaction

ter a map E→ V , assigning every edge e ∈ E a terminal (or end) vertex (or head) v

ter(e) the terminal vertex of edge e

UNDEF a value representing undefined attribute on a property container

v a vertex, such that v ∈ V

V the set of vertices of a graph G

? a predicate, such that ∀β ∈ (B ∪ {UNDEF}), ?(β)→ true

Appendix B

GraphAware Framework User Guide

This user guide has been created for the GraphAware Framework. It is intended as a public manual for

GraphAware users and does not assume familiarity with any other part of this report. It does, on the

other hand, require readers to have a basic understanding of Neo4j, Java, and Maven. It covers most

of the framework functionality from a developer’s point of view; some of this functionality might be

irrelevant for the purposes of this report and is, therefore, not mentioned in the main text at all. This

user guide as well as all the code can be downloaded from https://github.com/graphaware.

B.1 GraphAware Framework

The aim of the GraphAware Framework is to speed-up development with Neo4j and provide useful

generic and domain-specific modules, analytical capabilities, graph algorithm libraries, etc.

The framework can be used in two ways: as a library of useful tested code that simplifies tasks com-

monly needed when developing with Neo4j, or as a real framework with modules, which perform some

(behind-the-scenes) mutations on the graph as transactions occur. In the latter case, you get the benefit

of the “library” as well.

B.1.1 Download

Releases Releases are synced to Maven Central repository. To use the latest release, download it and

put it on your classpath. When using Maven, include the following snippet in your pom.xml:

<dependencies>

...

110

http://search.maven.org/remotecontent?filepath=com/graphaware/neo4j-framework/1.9-1.7/neo4j-framework-1.9-1.7.jar

B.1. GraphAware Framework 111

<dependency>

<groupId>com.graphaware</groupId>

<artifactId>neo4j-framework</artifactId>

<version>1.9-1.7</version>

</dependency>

...

</dependencies>

Snapshots To use the latest development version, just clone the Github repository, run mvn clean

install and put the produced .jar file (found in target) into your classpath. If using Maven for your

own development, include the following snippet in your pom.xml instead of copying the .jar:

<dependencies>

...

<dependency>

<groupId>com.graphaware</groupId>

<artifactId>neo4j-framework</artifactId>

<version>1.9-1.8-SNAPSHOT</version>

</dependency>

...

</dependencies>

Note on Versioning Scheme The version number has two parts, separated by a dash. The first part

indicates compatibility with a Neo4j version. The second part is the version of the framework. For

example, version 1.9-1.2 is a 1.2 version of the framework compatible with Neo4j 1.9.x

B.1.2 Framework Usage

Using the framework is very easy. Instantiate it, register desired modules, and start it. For example:� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase (); // replace with
your own permanent database

GraphAwareFramework framework = new GraphAwareFramework(database);

framework.registerModule(new SomeModule ());
framework.registerModule(new SomeOtherModule ());

framework.start();

//use database as usual� �

112 Chapter B. GraphAware Framework User Guide

So far, the only production-ready GraphAware module is the relationship count module. To write your

own module, read the Javadoc on GraphAwareModule and GraphAwareFramework. It would also be

useful to read the rest of this guide to understand the ideas and design decisions behind the framework

better.

B.1.3 Framework Usage (Batch)

For populating a database quickly, people sometimes use Neo4j BatchInserters. The framework can

be used with those as well, in the following fashion:� �
TransactionSimulatingBatchInserter batchInserter

= new TransactionSimulatingBatchInserterImpl("/path/to/your/db");

GraphAwareFramework framework = new GraphAwareFramework(batchInserter);

framework.registerModule(new SomeModule ());
framework.registerModule(new SomeOtherModule ());

framework.start();

//use batchInserter as usual� �
B.1.4 Configuration

In the above examples, the framework is used with sensible default configuration. At the moment, the

only thing that is configurable on the framework level is the character/string that the framework is

using to delimit information in its internal metadata secretly written into the graph. By default, this

separator is the hash character (#). In the unlikely event of interference with your application logic

(e.g. # is used in property keys or values in your application), this can be changed.

If, for instance, you would like to use the dollar sign ($) as a delimiter instead, instantiate the frame-

work in the following fashion:� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

FrameworkConfiguration customFrameworkConfig
= new BaseFrameworkConfiguration () {

@Override
public String separator () {

return "$";
}

};

GraphAwareFramework framework
= new GraphAwareFramework(database , customFrameworkConfig);

framework.registerModule(new SomeModule ());
framework.registerModule(new SomeOtherModule ());

https://github.com/graphaware/neo4j-relcount

B.1. GraphAware Framework 113

framework.start();� �

B.1.5 Features

Whether or not you use the framework as described above, you can always add it as a dependency and

take advantage of its useful features.

Simplified Transactional Operations

Every mutating operation in Neo4j must run within the context of a transaction. The code dealing with

that typically involves try-catch blocks and looks something like this:� �
try {

//do something useful , can throw a business exception
tx.success ();

} catch (RuntimeException e) {
//deal with a business exception
tx.failure ();

} finally {
tx.finish (); //can throw a database exception

}� �
GraphAware provides an alternative, callback-based API called TransactionExecutor in

com.graphaware.tx.executor. SimpleTransactionExecutor is a simple implementation thereof and

can be used on an instance-per-database basis. Since you will typically run a single in-process database

instance, you will also only need a single SimpleTransactionExecutor.

To create an empty node in a database, you would write something like this.� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

TransactionExecutor executor = new SimpleTransactionExecutor(database);

executor.executeInTransaction(new VoidReturningCallback () {
@Override
public void doInTx(GraphDatabaseService database) {

database.createNode ();
}

});� �
You have the option of selecting an ExceptionHandlingStrategy. By default, if an exception occurs,

the transaction will be rolled back and the exception re-thrown. This is true for both application/busi-

ness exceptions (i.e., the exception your code throws in the doInTx method above), and Neo4j excep-

tions (e.g. constraint violations). This default strategy is called RethrowException.

114 Chapter B. GraphAware Framework User Guide

The other available implementation of ExceptionHandlingStrategy is KeepCalmAndCarryOn. It still

rolls back the transaction in case an exception occurs, but it does not re-throw it (only logs it). To use a

different ExceptionHandlingStrategy, perhaps one that you implement yourself, just pass it in to the

executeInTransaction method:� �
executor.executeInTransaction(transactionCallback ,

KeepCalmAndCarryOn.getInstance ());� �
Batch Transactional Operations

It is a common requirement to execute operations in batches. For instance, you might want to popu-

late the database with data from a CSV file, or just some generated dummy data for testing. If there

are many such operations (let’s say 10,000 or more), doing it all in one transaction is not the most

memory-efficient approach. On the other hand, a new transaction for each operation results in too

much overhead. For some use cases, BatchInserters provided by Neo4j suffice. However, operations

performed using these do not run in transactions and have some other limitations (such as no node/re-

lationship delete capabilities). GraphAware can help here with BatchTransactionExecutors. There

are a few of them:

Input-Based Batch Operations If you have some input, such as lines from a CSV file or a result

of a Neo4j traversal, and you want to perform an operation for each item of such an input, use

IterableInputBatchTransactionExecutor. As the name suggests, the input needs to be in the form

of an Iterable. Additionally, you need to define a UnitOfWork, which will be executed against the

database for each input item. After a specified number of batch operations have been executed, the

current transaction is committed and a new one started, until we run out of input items to process.

For example, if you were to create a number of nodes from a list of node names, you would do some-

thing like this:� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

List <String > nodeNames = Arrays.asList("Name1", "Name2", "Name3"); //there
will be many more

int batchSize = 10;
BatchTransactionExecutor executor

= new IterableInputBatchTransactionExecutor <>(database , batchSize , nodeNames
, new UnitOfWork <String >() {

@Override
public void execute(GraphDatabaseService database , String nodeName , int

batchNumber , int stepNumber) {
Node node = database.createNode ();
node.setProperty("name", nodeName);

}
});

B.1. GraphAware Framework 115

executor.execute ();� �
Batch Operations with Generated Input or No Input In case you wish to do something input-

independent, for example just generate a number of nodes with random names, you can use the

NoInputBatchTransactionExecutor.

First, you would create an implementation of UnitOfWork<NullItem>, which is a unit of work expecting

no input:� �
/**
* Unit of work that creates an empty node with random name. Singleton.
*/
public class CreateRandomNode implements UnitOfWork <NullItem > {

private static final CreateRandomNode INSTANCE = new CreateRandomNode ();

public static CreateRandomNode getInstance () {
return INSTANCE;

}

private CreateRandomNode () {}

@Override
public void execute(GraphDatabaseService database , NullItem input , int

batchNumber , int stepNumber) {
Node node = database.createNode ();
node.setProperty("name", UUID.randomUUID ());

}
}� �
Then, you would use it in NoInputBatchTransactionExecutor:� �
// create 100 ,000 nodes in batches of 1,000:
int batchSize = 1000;
int noNodes = 100000;

BatchTransactionExecutor batchExecutor = new NoInputBatchTransactionExecutor(
database , batchSize , noNodes , CreateRandomNode.getInstance ());

batchExecutor.execute ();� �
Multi-Threaded Batch Operations If you wish to execute any batch operation using more than one

thread, you can use the MultiThreadedBatchTransactionExecutor as a decorator of any

BatchTransactionExecutor. For example, to execute the above example using 4 threads:� �
int batchSize = 1000;
int noNodes = 100000;

BatchTransactionExecutor batchExecutor = new NoInputBatchTransactionExecutor(
database , batchSize , noNodes , CreateRandomNode.getInstance ());

BatchTransactionExecutor multiThreadedExecutor = new
MultiThreadedBatchTransactionExecutor(batchExecutor , 4);

multiThreadedExecutor.execute ();� �

116 Chapter B. GraphAware Framework User Guide

Improved Transaction Event API

In com.graphaware.tx.event, you will find a decorator of the Neo4j Transaction Event API (called

TransactionData). Before a transaction commits, the improved API allows users to traverse the new

version of the graph (as it will be after the transaction commits), as well as a “snapshot” of the old

graph (as it was before the transaction started). It provides a clean API to access information about

changes performed by the transaction as well as the option to perform additional changes.

The least you can gain from using this functionality is avoiding java.lang.IllegalStateException:

Node/Relationship has been deleted in this tx when trying to access properties of nodes/rela-

tionships deleted in a transaction. You can also easily access relationships/nodes that were changed

and/or deleted in a transaction, again completely exception-free.

Usage To use the API, simply instantiate one of the ImprovedTransactionData implementations.

LazyTransactionData is recommended as it is the easiest one to use.� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

database.registerTransactionEventHandler(new TransactionEventHandler <Object >()
{

@Override
public Object beforeCommit(TransactionData data) throws Exception {

ImprovedTransactionData improvedTransactionData = new LazyTransactionData(
data);

//have fun here with improvedTransactionData!

return null;
}

@Override
public void afterCommit(TransactionData data , Object state) {}

@Override
public void afterRollback(TransactionData data , Object state) {}

});� �
FilteredTransactionData can be used instead. They effectively hide portions of the graph, including

any changes performed on nodes and relationships that are not interesting. InclusionStrategies

are used to convey the information about what is interesting and what is not. For example, of only

nodes with name equal to “Two” and no relationships at all are of interest, the example above could be

modified as follows:� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

database.registerTransactionEventHandler(new TransactionEventHandler <Object >()
{

@Override
public Object beforeCommit(TransactionData data) throws Exception {

B.1. GraphAware Framework 117

InclusionStrategies inclusionStrategies = InclusionStrategiesImpl
.all()
.with(new IncludeAllBusinessNodes () {

@Override
protected boolean doInclude(Node node) {

return node.getProperty("name", "default").equals("Two");
}

@Override
public String asString () {

return "includeOnlyNodeWithNameEqualToTwo";
}

})
.with(IncludeNoRelationships.getInstance ());

ImprovedTransactionData improvedTransactionData
= new FilteredTransactionData(new LazyTransactionData(data),

inclusionStrategies);

//have fun here with improvedTransactionData!

return null;
}

@Override
public void afterCommit(TransactionData data , Object state) {}

@Override
public void afterRollback(TransactionData data , Object state) {}

});� �
Example Scenario Let’s illustrate why this might be useful on a very simple example. Let’s say we

have a FRIEND_OF relationship in the system and it has a strength property indicating the strength

of the friendship from 1 to 3. Let’s further assume that we are interested in the total strength of all

FRIEND_OF relationships in the entire system.

We’ll achieve this by creating a custom transaction event handler that keeps track of the total strength.

While not an ideal choice from a system throughput perspective, let’s say for the sake of simplicity that

we are going to store the total strength on the root node (with ID=0) as a totalFriendshipStrength

property.� �
public class TotalFriendshipStrengthCounter implements TransactionEventHandler

<Void > {
public static final RelationshipType FRIEND_OF = DynamicRelationshipType.

withName("FRIEND_OF");
public static final String STRENGTH = "strength";
public static final String TOTAL_FRIENDSHIP_STRENGTH = "

totalFriendshipStrength";

private final GraphDatabaseService database;

public TotalFriendshipStrengthCounter(GraphDatabaseService database) {
this.database = database;

}

@Override
public Void beforeCommit(TransactionData data) throws Exception {

118 Chapter B. GraphAware Framework User Guide

ImprovedTransactionData improvedTransactionData = new LazyTransactionData(
data);

int delta = 0;

// handle new friendships
for (Relationship newFriendship : improvedTransactionData.

getAllCreatedRelationships ()) {
if (newFriendship.isType(FRIEND_OF)) {

delta += (int) newFriendship.getProperty(STRENGTH , 0);
}

}

// handle changed friendships
for (Change <Relationship > changedFriendship : improvedTransactionData.

getAllChangedRelationships ()) {
if (changedFriendship.getPrevious ().isType(FRIEND_OF)) {

delta -= (int) changedFriendship.getPrevious ().getProperty(STRENGTH ,
0);

delta += (int) changedFriendship.getCurrent ().getProperty(STRENGTH ,
0);

}
}

// handle deleted friendships
for (Relationship deletedFriendship : improvedTransactionData.

getAllDeletedRelationships ()) {
if (deletedFriendship.isType(FRIEND_OF)) {

delta -= (int) deletedFriendship.getProperty(STRENGTH , 0);
}

}

Node root = database.getNodeById (0);
root.setProperty(TOTAL_FRIENDSHIP_STRENGTH , (int) root.getProperty(

TOTAL_FRIENDSHIP_STRENGTH , 0) + delta);

return null;
}

@Override
public void afterCommit(TransactionData data , Void state) {}

@Override
public void afterRollback(TransactionData data , Void state) {}

}� �
All that remains is registering this event handler on the database:� �
GraphDatabaseService database

= new TestGraphDatabaseFactory ().newImpermanentDatabase ();

database.registerTransactionEventHandler(
new TotalFriendshipStrengthCounter(database));� �

TotalFriendshipStrengthCountingDemo demonstrates the entire example.

Usage in Detail The API categorizes PropertyContainers, i.e., Nodes and Relationships into:

• created in this transaction

B.1. GraphAware Framework 119

• deleted in this transaction

• changed in this transaction, i.e those with at least one property created, deleted, or changed

• untouched by this transaction

Users can find out, whether a PropertyContainer has been created, deleted, or changed in this trans-

action and obtain all the created, deleted, and changed PropertyContainers.

Properties that have been created, deleted, and changed in the transaction are categorised by the

changed PropertyContainer they belong to. Users can find out, which properties have been created,

deleted, and changed for a given changed PropertyContainer and check, whether a given property

for a given changed PropertyContainer has been created, deleted, or changed.

Properties of created PropertyContainers are available through the actual created PropertyContainer.

Properties of deleted PropertyContainers (as they were before the transaction started) are avail-

able through the snapshot of the deleted PropertyContainer, obtained by calling getDeleted(Node)

or getDeleted(Relationship). Properties of created and deleted containers will not be returned

by changedProperties(Node) and changedProperties(Relationship) as these only return changed

properties of changed PropertyContainers.

Changed PropertyContainers and properties are wrapped in a Change object which holds the previ-

ous state of the object before the transaction started, and the current state of the object (when the

transaction commits).

All created PropertyContainers and properties and current versions of changed PropertyContainers

and properties can be accessed by native Neo4j API and the traversal API as one would expect. For

example, one can traverse the graph starting from a newly created node, using a mixture of newly cre-

ated and already existing relationships. In other words, one can traverse the graph as if the transaction

has already been committed. This is similar to using TransactionData.

A major difference between this API and TransactionData, however, is what one can do with the

returned information about deleted PropertyContainers and properties and the previous versions

thereof. With this API, one can traverse a snapshot of the graph as it was before the transaction started.

As opposed to the TransactionData API, this will not result in exceptions being thrown.

For example, one can start traversing the graph from a deleted Node, or the previous version of a

changed Node. Such a traversal will only traverse Relationships that existed before the transaction

started and will return properties and their values as they were before the transaction started. This is

achieved using NodeSnapshot and RelationshipSnapshot decorators.

120 Chapter B. GraphAware Framework User Guide

One can even perform additional mutating operations on the previous version (snapshot) of the graph,

provided that the mutated objects have been changed in the transaction (as opposed to deleted). Mu-

tating deleted PropertyContainers and properties does not make any sense and will cause exceptions.

To summarise, this API gives access to two versions of the same graph. Through created

PropertyContainers and/or their current versions, one can traverse the current version of the graph as

it will be after the transaction commits. Through deleted and/or previous versions of PropertyContainers,

one can traverse the previous snapshot of the graph, as it was before the transaction started.

Batch Usage In case you would like to use the Neo4j BatchInserter API but still get access to

ImprovedTransactionData during batch insert operations, TransactionSimulatingBatchInserterImpl

is the class for you. It is a BatchInserter but allows TransactionEventHandlers to be registered on

it. It then simulates a transaction commit every once in a while (configurable, please refer to JavaDoc).

As a GraphDatabaseService equivalent for batch inserts, this project provides

TransactionSimulatingBatchGraphDatabase for completeness, but its usage is discouraged.

DTOs

In com.graphaware.propertycontainer.dto, you will find classes used for creating detached repre-

sentations (or Data Transfer Objects (DTOs)) from Nodes, Relationships and Properties.

First, there are property-less representations of Relationships, useful for encapsulating a RelationshipType

and (optionally) Direction. These can be found in the common sub-package. For instance, if you

need an object that encapsulates RelationshipType and Direction, which can be constructed from a

Relationship object, use� �
Relationship relationship = ... //get it in the database
HasTypeAndDirection relationshipRepresentation

= new TypeAndDirection(relationship); //now you can store this , serialise it
, or whatever� �

Of course, other commonly needed constructors are provided. For string-convertible encapsulation

of RelationshipType and Direction, use SerializableTypeAndDirectionImpl, which provides a

toString(. . .) method and a string-based constructor.

If your relationship representations need to contain properties as well, have a look at the plain.relationship

sub-package. Specifically,there are immutable relationship representations, like ImmutableRelationshipImpl

and ImmutableDirectedRelationshipImpl, and their mutable counterparts. The reason they are in

the plain package is that no conversion is done on property values; they are represented as Objects.

B.1. GraphAware Framework 121

In the string.relationship package, you will find some classes with the same names as above

(ImmutableRelationshipImpl and ImmutableDirectedRelationshipImpl,. . .). These are essentially

the same except that property values are represented as strings. This is useful, for instance, when you

want to convert a Relationship representation (including its properties) to and from a single string.

For that purpose, use SerializableRelationshipImpl and SerializableDirectedRelationshipImpl.

Please note that when using this feature, it would be good not to name anything (properties, relation-

ships) with names that start with “GA”. Also, please refrain from using the “#” (or anything else you

choose to be your information separator in string representations of relationships, nodes, and proper-

ties) symbol altogether, especially in relationship and node property values.

Neo4j does not allow null keys for properties, but does allow empty strings to be keys. GraphAware

does not allow this, please make sure you do not use empty strings as property keys. Empty strings (or

nulls) as values are absolutely fine.

Miscellaneous Utilities

The following functionality is also provided:

• Arrays (see ArrayUtils)

– Determine if an object is a primitive array

– Convert an array to a string representation

– Check equality of two Objects which may or may not be arrays

– Check equality of two Map<String, Object> instances, where the Object-typed values may

or may not be arrays

• Property Containers (see PropertyContainerUtils)

– Convert a PropertyContainer to a Map of properties

– Delete nodes with all their relationships automatically, avoiding a

org.neo4j.kernel.impl.nioneo.store.ConstraintViolationException: Node record

Node[xxx] still has relationships, using

DeleteUtils.deleteNodeAndRelationships(node);

• Relationship Directions

– The need to determine the direction of a relationship is quite common. The Relationship

object does not provide the functionality for the obvious reason that it depends on “who’s

point of view we’re talking about”. In order to resolve a direction from a specific Node’s

122 Chapter B. GraphAware Framework User Guide

point of view, use

DirectionUtils.resolveDirection(Relationship relationship, Node pointOfView);

• Iterables (see IterableUtils in tests)

– Count iterables by iterating over them, unless they’re a collection in which case just return

size()

– Randomise iterables by iterating over them and shuffling them, unless they’re a collection

in which case just shuffle

– Convert iterables to lists

– Check if iterable contains an object by iterating over the iterable, unless it’s a collection in

which case just return contains(..)

. . . and more, please see JavaDoc.

Appendix C

Relationship Count Module User Guide

This user guide has been created for the Relationship Count Module. It is intended as a public manual

for the module users and does not assume familiarity with any other part of this report, except Appendix

B. This user guide as well as all the code can be downloaded from https://github.com/graphaware.

C.1 GraphAware Relationship Count Module

In some Neo4j applications, it is useful to know how many relationships of a given type, perhaps with

different properties, are present on a node. Naive on-demand relationship counting quickly becomes

inefficient with large numbers of relationships per node.

The aim of this GraphAware Relationship Count Module is to provide an easy-to-use, high-performance

relationship counting mechanism.

C.1.1 Download

Node: In order to use this module, you will also need the GraphAware Framework.

Releases Releases are synced to Maven Central repository. To use the latest release, download it and

put it on your classpath. When using Maven, include the following snippet in your pom.xml:

<dependencies>

...

<dependency>

123

https://github.com/graphaware/neo4j-framework
https://github.com/graphaware/neo4j-framework
http://search.maven.org/remotecontent?filepath=com/graphaware/neo4j-relcount/1.9-1.3/neo4j-relcount-1.9-1.3.jar

124 Chapter C. Relationship Count Module User Guide

<groupId>com.graphaware</groupId>

<artifactId>neo4j-relcount</artifactId>

<version>1.9-1.3</version>

</dependency>

...

</dependencies>

Snapshots To use the latest development version, just clone this repository, run mvn clean install

and put the produced .jar file (found in target) into your classpath. If using Maven for your own

development, include the following snippet in your pom.xml instead of copying the .jar:

<dependencies>

...

<dependency>

<groupId>com.graphaware</groupId>

<artifactId>neo4j-relcount</artifactId>

<version>1.9-1.4-SNAPSHOT</version>

</dependency>

...

</dependencies>

Note on Versioning Scheme The version number has two parts, separated by a dash. The first part

indicates compatibility with a Neo4j version. The second part is the version of the module. For example,

version 1.9-1.2 is a 1.2 version of the module compatible with Neo4j 1.9.x.

Compatibility This module is compatible with Neo4j v. 1.9.x and GraphAware Framework v. 1.9-1.7.

C.1.2 Usage

Once set up (read below), it is very simple to use the API.� �
Node node = ... //find a node somewhere , perhaps in an index

RelationshipCounter relationshipCounter = ... // instantiate some kind of
relationship counter

int count = relationshipCounter.count(node); //DONE!� �

C.1. GraphAware Relationship Count Module 125

A few different kinds of relationship counters are provided. There are two categories: simple rela-

tionship counters, found in com.graphaware.relcount.simple, only deal with relationship types and

directions, but ignore relationship properties. Full relationship counters, found in

com.graphaware.relcount.full, on the other hand, are more powerful as they take relationship prop-

erties into account as well.

C.1.3 Simple Relationship Counters

If the only thing of interest are relationship counts per type and direction (relationship properties do

not matter), it is best to use simple relationship counters, from simplicity and performance point of

view.

Simple Caching Relationship Counter

The most efficient simple counter is the SimpleCachedRelationshipCounter. As the name suggests,

it counts relationships by reading them from “cache”, i.e., nodes’ properties. In order for this caching

mechanism to work, you need to be using the GraphAware Framework with

SimpleRelationshipCountModule registered.

The simplest default setup looks like this:� �
GraphDatabaseService database = ... //your database

GraphAwareFramework framework = new GraphAwareFramework(database);
framework.registerModule(new SimpleRelationshipCountModule ());
framework.start();� �
Now, let’s say you have a very simple graph with 10 people and 2 cities. Each person lives in one of the

cities (relationship type LIVES_IN), and each person follows every other person on Twitter (relationship

type FOLLOWS).

In order to count all followers of a person named Tracy, who is represented by node with ID = 2 in

Neo4j, you would write the following:� �
Node tracy = database.getNodeById (2);

RelationshipCounter followers
= new SimpleCachedRelationshipCounter(FOLLOWS , INCOMING);

followers.count(tracy); // returns 9� �
For graphs with thousands (or more) relationships per node, this way of counting relationships can be

an significantly faster than the “naive” approach of traversing all relationships.

https://github.com/graphaware/neo4j-framework

126 Chapter C. Relationship Count Module User Guide

Simple Naive Relationship Counter

It is possible to use the RelationshipCounter API without any caching at all, using the “naive” ap-

proach.

The following snippet will count all Tracy’s followers by traversing and inspecting all relationships:� �
Node tracy = database.getNodeById (2);

RelationshipCounter followers
= new SimpleNaiveRelationshipCounter(FOLLOWS , INCOMING);

followers.count(tracy);� �

C.1.4 Full Relationship Counters

Full relationship counters are capable of counting relationships based on their types, directions, and

properties.

Full Caching Relationship Counter

The most efficient full counter is the FullCachedRelationshipCounter. As the name suggests, it counts

relationships by reading them from “cache”, i.e., nodes’ properties. In order for this caching mecha-

nism to work, you need to be using the GraphAware Framework with FullRelationshipCountModule

registered.

The simplest default setup looks like this:� �
GraphAwareFramework framework = new GraphAwareFramework(database);
FullRelationshipCountModule module = new FullRelationshipCountModule ();
framework.registerModule(module);
framework.start();� �
Now, let’s say you have a very simple graph with 10 people and 2 cities. Each person lives in one of the

cities (relationship type LIVES_IN), and each person follows every other person on Twitter (relation-

ship type FOLLOWS). Furthermore, there can be an optional “strength” property on each FOLLOWS

relationship indicating the strength of a person’s interest into the other person (1 or 2).

In order to count all followers of a person named Tracy, who is represented by node with ID = 2 in

Neo4j, you would write the following:� �
Node tracy = database.getNodeById (2);
FullRelationshipCounter followers = module.cachedCounter(FOLLOWS , INCOMING);
followers.count(tracy); // returns 9� �

https://github.com/graphaware/neo4j-framework

C.1. GraphAware Relationship Count Module 127

Alternatively, if you do not have access to the module object from when you’ve set things up, you can

instantiate the counter directly:� �
Node tracy = database.getNodeById (2);

FullRelationshipCounter followers
= new FullCachedRelationshipCounter(FOLLOWS , INCOMING);

followers.count(tracy); // returns 9� �
The first approach is preferred, however, because it simplifies things when using the module (or the

Framework) with custom configuration.

If you wanted to know, how many of those followers are very interested in Tracy (strength = 2):� �
Node tracy = database.getNodeById (2);

FullRelationshipCounter followersStrength2
= module.cachedCounter(FOLLOWS , INCOMING).with(STRENGTH , 2);

followersStrength2.count(tracy);� �
When counting using module.cachedCounter(FOLLOWS, INCOMING), all incoming relationships of type

FOLLOWS are taken into account, including those with and without the strength property. What if,

however, the lack of the strength property has some meaning, i.e., if we want to consider “undefined”

as a separate case? This kind of counting is referred to as “literal” counting and would be done like

this:� �
Node tracy = database.getNodeById (2);
FullRelationshipCounter followers = module.cachedCounter(FOLLOWS , INCOMING);
followers.countLiterally(tracy);� �
For graphs with thousands (or more) relationships per node, this way of counting relationships can be

an order of magnitude faster than a naive approach of traversing all relationships and inspecting their

properties.

How does it work? There is no magic. The module inspects all transactions before they are commit-

ted to the database and analyses them for any created, deleted, or modified relationships.

It caches the relationship counts as properties on each node, both for incoming and outgoing relation-

ships. In order not to pollute nodes with meaningless properties, a RelationshipCountCompactor, as

the name suggests, compacts the cached information.

Let’s illustrate that on an example. Suppose that a node has no relationships to start with. When you

create the first outgoing relationship of type FRIEND_OF with properties level equal to 2 and timestamp

equal to 1368206683579, the following property is automatically written to the node:

128 Chapter C. Relationship Count Module User Guide

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368206683579 = 1

Let’s break it down:

• _GA_ is a prefix for all GraphAware internal metadata.

• FRC_ is the default ID of the FullRelationshipCountModule. This can be configured on per-module

basis and is useful for registering multiple modules performing the same functionality with dif-

ferent configurations.

• FRIEND_OF is the relationship type

• # is a configurable information delimiter GraphAware uses internally.

• level is the key of the first property

• 2 is the value of the first property (level)

• timestamp is the key of the second property

• 1368206683579 is the value of the second property (timestamp)

• 1 is the cached number of relationships matching this representation (stored as a value of the

property)

NOTE: None of the application level nodes or relationships should have names, types, labels, property

keys or values containing the following strings: * _GA_ * # (can be changed if needed)

That includes user input written into properties of nodes and relationship. Please check for this in your

application and encode it somehow.

Right, at some point, after our node makes more friends, the situation will look something like this:

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368206683579 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#1368206668364 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368206623759 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368924528927 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#1368092348239 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368547772839 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#1368542321123 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#1368254232452 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#1368546532344 = 1

C.1. GraphAware Relationship Count Module 129

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#1363234542345 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#1363234555555 = 1

At that point, the compactor looks at the situation finds out there are too many cached relationship

counts. More specifically, there is a threshold called the compaction threshold which by default is set to

20. Let’s illustrate with 10.

The compactor thus tries to generalise the cached relationships. One such generalisation might involve

replacing the timestamp with a wildcard (GA*), generating representations like this:

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#_GA_*

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#_GA_*

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#_GA_*

Then it compacts the cached relationship counts that match these representations. In our example, it

results in this:

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#_GA_* = 3

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#_GA_* = 3

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#_GA_* = 5

After that, timestamp will always be ignored for these relationships, so if the next created relationships

is

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#1363266542345

it will result in

_GA_FRC_FRIEND_OF#OUTGOING#level#0#timestamp#_GA_* = 4

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#_GA_* = 3

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#_GA_* = 5

The compaction process uses heuristics to determine, which property is the best one to generalise. In

simple terms, it is the most property with most frequently changing values (measured per relationship

type).

That’s how it works on a high level. Of course relationships with different levels of generality are

supported (for example, creating a FRIEND_OF relationship without a level will work just fine). When

issuing a query like this

130 Chapter C. Relationship Count Module User Guide

� �
RelationshipCounter counter

= new FullCachedRelationshipCounter(FRIEND_OF , OUTGOING);

int count = counter.count(node);� �
on a node with the following cache counts

_GA_FRC_FRIEND_OF#OUTGOING#level#3#timestamp#1368206683579 = 1

_GA_FRC_FRIEND_OF#OUTGOING#level#2#timestamp#_GA_* = 10

_GA_FRC_FRIEND_OF#OUTGOING#level#1#timestamp#_GA_* = 20

_GA_FRC_FRIEND_OF#OUTGOING = 5 (no level or timestamp provided on these relationships)

the result will be. . . you guessed it. . . 36.

On the other hand, counting pure outgoing FRIEND_OF relationships with no properties would be done

like this:� �
FullRelationshipCounter counter

= new FullCachedRelationshipCounter(FRIEND_OF , OUTGOING);

int count = counter.countLiterally(node);� �
and result in 5.

However, if you now issue the following query:� �
RelationshipCounter counter = module.cachedCounter(FRIEND_OF , OUTGOING)

.with("level", 2)

.with("timestamp", 123456789);

int count = counter.count(node);� �
an UnableToCountException will be thrown, because the granularity needed for answering such a

query has been compacted away. There are three ways to deal with this problem, either

• configure the compaction threshold so that this does not happen, or

• manually fallback to naive counting, or

• use FullNaiveRelationshipCounter, which falls back to naive counting approach automatically

Advanced Usage

There are a number of things that can be tweaked here. Let’s talk about the compaction threshold first.

C.1. GraphAware Relationship Count Module 131

Compaction Threshold Level What should the compaction threshold be set to? That depends en-

tirely on the use case. Let’s use the people/places example from earlier with FOLLOWS and LIVES_IN

relationships. Each node will have a number of LIVES_IN relationships, but only incoming (places) or

outgoing (people). These relationships have no properties, so that’s 1 property for each node.

Furthermore, each person will have incoming and outgoing FOLLOWS relationships with 3 possible

“strengths”: none, 1, and 2. That’s 6 more properties. A compaction threshold of 7 would, therefore be

appropriate for this use case.

If you know, however, that you are not going to be interested in the strength of the FOLLOWS relation-

ships, you could well set the threshold to 3. One for the LIVES_IN relationships, and 2 for incoming

and outgoing FOLLOWS relationships.

The threshold can be set when constructing the module by passing in a custom configuration:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

// compaction threshold to 7
RelationshipCountStrategies relationshipCountStrategies =

RelationshipCountStrategiesImpl.defaultStrategies ().with (7);

FullRelationshipCountModule module
= new FullRelationshipCountModule(relationshipCountStrategies);

framework.registerModule(module);
framework.start();� �
Relationship Weights Let’s say you would like each relationship to have a different “weight”, i.e., some

relationships should count for more than one. This is entirely possible by implementing a custom

RelationshipWeighingStrategy.

Building on the previous example, let’s say you would like the FOLLOWS relationship with strength =

2 to count for 2 relationships. The following code would achieve just that:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

RelationshipWeighingStrategy customWeighingStrategy = new
RelationshipWeighingStrategy () {

@Override
public int getRelationshipWeight(Relationship relationship , Node pointOfView

) {
return (int) relationship.getProperty(STRENGTH , 1);

}
};

RelationshipCountStrategies relationshipCountStrategies
= RelationshipCountStrategiesImpl.defaultStrategies ()

.with (7) // threshold

.with(customWeighingStrategy);

FullRelationshipCountModule module
= new FullRelationshipCountModule(relationshipCountStrategies);

132 Chapter C. Relationship Count Module User Guide

framework.registerModule(module);
framework.start();� �
Excluding Relationships To exclude certain relationships from the count caching process altogether,

create a strategy that implements the RelationshipInclusionStrategy. For example, if you’re only

interested in FOLLOWS relationship counts and nothing else, you could configure the module as fol-

lows:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

RelationshipInclusionStrategy customRelationshipInclusionStrategy
= new RelationshipInclusionStrategy () {

@Override
public boolean include(Relationship relationship) {

return relationship.isType(FOLLOWS);
}

};

RelationshipCountStrategies relationshipCountStrategies
= RelationshipCountStrategiesImpl.defaultStrategies ()

.with(customRelationshipInclusionStrategy);

FullRelationshipCountModule module = new FullRelationshipCountModule(
relationshipCountStrategies);

framework.registerModule(module);
framework.start();� �
Excluding Relationship Properties Whilst the compaction mechanism eventually excludes frequently

changing properties anyway, it might be useful (at least for performance reasons) to exclude them ex-

plicitly, if you know up front that these properties are not going to be used in the counting process.

Let’s say, for example, that each FOLLOWS relationship has a “timestamp” property that is pretty much

unique for each relationship. In that case, you might choose to ignore that property for the purposes of

relationship count caching by setting up the module in the following fashion:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

RelationshipPropertyInclusionStrategy
customRelationshipPropertyInclusionStrategy

= new RelationshipPropertyInclusionStrategy () {
@Override
public boolean include(String key , Relationship propertyContainer) {

return !"timestamp".equals(key);
}

};

RelationshipCountStrategies relationshipCountStrategies
= RelationshipCountStrategiesImpl.defaultStrategies ()

.with(customRelationshipPropertyInclusionStrategy);

FullRelationshipCountModule module
= new FullRelationshipCountModule(relationshipCountStrategies);

C.1. GraphAware Relationship Count Module 133

framework.registerModule(module);
framework.start();� �

Deriving Relationship Properties Sometimes, it might be useful to derive relationship properties

that are not explicitly there for the purposes of relationship counting. Let’s say, for example, that you

want to count the number of followers based on the followers’ gender. In that case, each FOLLOWS

relationship could get a derived “followeeGender” property, value of which is the gender of the followed

person. Such a requirement would be achieved with the following setup:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

RelationshipPropertiesExtractionStrategy customPropertiesExtractionStrategy
= new RelationshipPropertiesExtractionStrategy () {

@Override
public Map <String , String > extractProperties(Relationship relationship ,

Node pointOfView) {
//all real properties
Map <String , String > result = PropertyContainerUtils.

propertiesToStringMap(relationship);

// derived property from the "other" node participating in the
relationship

if (relationship.isType(FOLLOWS)) {
result.put(GENDER , relationship.getOtherNode(pointOfView).

getProperty(GENDER).toString ());
}

return result;
}

};

RelationshipCountStrategies relationshipCountStrategies
= RelationshipCountStrategiesImpl.defaultStrategies ()

.with(IncludeAllNodeProperties.getInstance ()) //no node properties
included by default!

.with(customPropertiesExtractionStrategy);

FullRelationshipCountModule module = new FullRelationshipCountModule(
relationshipCountStrategies);

framework.registerModule(module);
framework.start();� �
Counting would be done as usual:� �
Node tracy = database.getNodeById (2);

RelationshipCounter maleFollowers
= module.cachedCounter(FOLLOWS , INCOMING).with(GENDER , MALE);

maleFollowers.count(tracy); // returns only male followers count

RelationshipCounter femaleFollowers
= module.cachedCounter(FOLLOWS , INCOMING).with(GENDER , FEMALE);

femaleFollowers.count(tracy); // returns only female followers count� �

134 Chapter C. Relationship Count Module User Guide

Full Naive Relationship Counter

It is possible to use the RelationshipCounter API without any caching at all. You might want to fall

back to the naive approach of traversing through all relationships because you caught an

UnableToCountException, or maybe you simply do not have enough relationships in your system to

justify the write-overhead of the caching approach.

It is still advisable to obtain your RelationshipCounter from a module, although the module might

not need to be registered with a running instance of the GraphAware framework. Even when using the

naive approach, it is possible to use custom strategies (RelationshipWeighingStrategy,

RelationshipPropertiesExtractionStrategy, etc.) explained above.

The following snippet will count all Tracy’s followers by traversing and inspecting all relationships:� �
FullRelationshipCountModule module = new FullRelationshipCountModule ();

Node tracy = database.getNodeById (2);

RelationshipCounter followers = module.naiveCounter(FOLLOWS , INCOMING);
followers.count(tracy);� �
If you’re using this just for naive counting (no fallback, no custom config), it is possible to achieve the

same thing using the following code, although the former approach is preferable.� �
Node tracy = database.getNodeById (2);
RelationshipCounter following

= new FullNaiveRelationshipCounter(FOLLOWS , OUTGOING);
following.count(tracy);� �
Full Falling Back Relationship Counter

Although it is recommended to avoid getting UnableToCountExceptions by configuring things properly,

there is an option of an automatic fallback to the naive approach when the caching approach has failed,

because the needed granularity for counting some kind of relationship has been compacted away.

The following code snippet illustrates the usage:� �
GraphAwareFramework framework = new GraphAwareFramework(database);

RelationshipCountStrategies relationshipCountStrategies
= RelationshipCountStrategiesImpl.defaultStrategies ().with (3);

FullRelationshipCountModule module
= new FullRelationshipCountModule(relationshipCountStrategies);

framework.registerModule(module);
framework.start();

populateDatabase ();

C.1. GraphAware Relationship Count Module 135

Node tracy = database.getNodeById (2);

RelationshipCounter followers = module.fallingBackCounter(FOLLOWS , INCOMING);
assertEquals (9, followers.count(tracy)); //uses cache

RelationshipCounter followersStrength2
= module.fallingBackCounter(FOLLOWS , INCOMING).with(STRENGTH , 2);

assertEquals (3, followersStrength2.count(tracy)); //falls back to naive� �

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Aims
	Contributions
	Report Structure

	Background
	Graph Databases
	Basic Definitions
	Property Graph
	Neo4j
	Online Analytical Processing
	Problem Definition

	Related Work
	OLAP in Graph Databases
	Structural Analytics
	Summary

	Theory
	Basic Definitions
	Vertex Degrees in Property Graphs
	General-to-Specific Ordering
	Naive Caching
	Constant Space Complexity Caching
	Property Change Frequency Function

	Implementation
	GraphAware Framework
	Relationship Count Module

	Evaluation
	Functional Testing
	Performance Testing

	Conclusion and Future Work
	Achievements
	Applications
	Future Work

	Bibliography
	Appendices
	Symbols Reference
	GraphAware Framework User Guide
	GraphAware Framework

	Relationship Count Module User Guide
	GraphAware Relationship Count Module

