
INTRODUCTION  
WHY SEARCH AND WHY GRAPH
Search is a key feature of most applications. Users search for 
products, places, other users, documents, and more. And while 
structured search was common for early applications, today, 
driven by the ubiquity of internet search engines, full-text 
search dominates the usage.

The world around us consists of connected information. Being 
able to store and query those rich networks of data allows us 
to support decisions, make recommendations, and predict 
impacts. Graph databases enable both transactional as well as 
analytical uses on top of our highly connected domains.

Bringing both together allows us to enhance search results 
with graph-based capabilities like recommendation features 
or concept search, and also to use advanced search results as 
entry points to graph traversals. 

OUR USE CASE: MULTI-FACETED SEARCH WITH 
RECOMMENDATIONS
Each domain has specific expectations in terms of search 
relevance and a different set of issues, constraints, and 
requirements.

Our use case example is product search, used by any retailer 
(Amazon, eBay, Target, etc.).

Text search and catalog navigation are not only the entry points 
for users but they are also the main “salespeople”. Compared 
to other search engines, the set of “items” to be searched is 
more controlled and regulated.

For the search infrastructure, these aspects have to be taken 
into account:

•	 Multiple data sources: Products and related information 
come from various heterogeneous sources like product 
suppliers, information providers, and sellers.

•	 Marketing strategy: New promotions, offers, and marketing 
campaigns are created to promote the site or specific 
products. All of them should affect results boosting.

•	 Personalization: In order to provide a better and more 
customized user experience, clicks, purchases, search 

queries, and other user signals must be captured, 
processed, and used to personalize search results.

•	 Provider information: Product suppliers are the most 
important. They provide information like quantity, 
availability, delivery options, timing, and changes in the 
product’s details.

All these requirements and data sources affect search results in 
several ways. Designing a search infrastructure for e-commerce 
vendors requires an entire ecosystem of data and related data 
flows together with platforms to manage them. 

THE VALUE OF SEARCH  
Search is a conversation between a user and a search engine.

Search is ubiquitous in modern applications. It’s the fastest way 
to find relevant information in vast amounts of data. The search 
engine needs the ability to provide relevant results to the user’s 
search terms, as well as to further refine and filter the search.

FACETING
Initial search results are often too broad and need to be filtered 
or refined, e.g., by using facets. Facets are categories derived 
from the search results that are useful for narrowing a search. 
Each facet represents an attribute of the structured information 
like category, price, color, location, etc., and comes with a count 
of contained results.

252

BY DR. ALESSANDRO NEGRO , MICHAEL HUNGER , AND CHRISTOPHE WILLEMSEN

 

  Introduction

  The Value of Search

  The Power of the Graph

  A Graph-Centric Architecture for Search  
    Platforms

  Single Knowledge Graph, Multiple Views... 
    and more!

CONTENTS

DZONE.COM  |  © DZONE, INC. VISIT DZONE.COM/REFCARDZ FOR MORE!

Graph-Powered Search: 
Neo4j & Elasticsearch

BROUGHT TO YOU IN PARTNERSHIP WITH

https://dzone.com/refcardz
https://graphaware.com
https://neo4j.com/?utm_source=dzone&utm_medium=refcard&utm_content=learn&utm_campaign=dl
https://neo4j.com/?utm_source=dzone&utm_medium=refcardes&utm_content=learn&utm_campaign=dl


https://neo4j.com/sandbox-v2/?utm_source=dzone&utm_medium=refcardessandbox&utm_content=learn&utm_campaign=dl
https://neo4j.com/sandbox-v2/?utm_source=dzone&utm_medium=refcardessandbox&utm_content=learn&utm_campaign=dl


SEARCH ENGINE INTERNALS
1.	 Indexing: Documents are processed to make them 

searchable.

2.	 User input: Users specify the search request through 
some form of user interface or API.

3.	 Ranking: The search engine compares the input to the 
index and ranks documents according to how closely they 
match the query.

4.	 Results display: The final results are displayed via a user 
interface.

An index is a collection of documents that share some 
characteristics. For example, you can have different indexes for 
customer data, product catalog, order data, etc.

It is identified by an (all lowercase) name to perform indexing, 
search, update, and delete operations against the contained 
documents.

A document is a basic unit of information that can be indexed. 
Any number of JSON documents of different types are stored in 
those indexes.

INDEXING
Documents that are added to a search index are analyzed and 
prepared in order to create the inverted index data-structure in 
Lucene and other related structures to allow fast result retrieval 
during search. These are the steps of the document analysis:

•	 Tokenization 

•	 Breaking up a string into tokens to be indexed 

•	 Consistent handling of punctuation, numbers, and other 
symbols 

•	 Handle multiple tokenizations of compound words to 
match possible inputs

•	 Downcasing 

•	 All words are converted to lowercase for case-
insensitive search 

•	 Stemming/stopword removal 

•	 Strips words of suffixes, plurals, and conjugations

•	 Synonym expansion 

•	 Remove commonly occurring words 

•	 Newer search engines keep them for better results 

•	 Resolve synonyms via thesauri and add to index

•	 Alternatively, synonym resolution can be done on 
search terms instead

EXAMPLE FOR INDEX CREATION
In Elasticsearch, during the index creation, it is possible to specify:

•	 All settings for the index

•	 Number of shards and replicas 

•	 Custom analyzers

•	 The mapping that defines how a document, and the fields 
it contains, are stored and indexed

To create a simple index with one shard and two replicas for 
type customer with name and description (using a pre-
defined analyzer for English text) fields, this call is used: 

PUT customers
{
    "settings" : {
        "number_of_shards" : 1,
        "number_of_replicas": 2
    },
    "mappings" : {
        "customer" : {
            "properties" : {
                "name" : { "type" : "keyword" },
                "description" : { "type" : "text",  
                                  "analyzer": "english" }
            }
        }
    }
}

For more detail on Elasticsearch index creation, refer to the 

documentation here.

SEARCH QUERY LANGUAGE
Elasticsearch provides a search API for executing queries and a 

JSON-based Query DSL to define queries.

The DSL has two types of clauses: 

•	 Leaf clauses: check for particular value in a field (e.g., match, 

term, or range queries). These can be used on their own. 

•	 Compound clauses: Wrap other leaf or compound clauses 

to combine them in a logical fashion (e.g., bool or dis_
max), or to alter their behavior (e.g., constant_score).

The behavior of a query clause depends on the context:

•	 Query context: search for documents matching the query 
and calculate a relevance score

•	 Filter context: just check if a document matches; no scores 
are calculated.

3 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html


GET /_search
{
  "query": { 
    "bool": { 
      "must": [
        { "match": { "title":   "Search"        }}, 
        { "match": { "content": "Elasticsearch" }}  
      ],
      "filter": [ 
        { "term":  { "status": "published" }}, 
        { "range": { "publish_date":  
                   { "gte": "2015-01-01" }}} 
      ]
    }
  }
}

More detail can be found here. 

THE POWER OF THE GRAPH  

Connected data is all around us and enables new types of 

applications. Everything from history and politics to economics, 

markets, science, and information processing is based on 

interrelated information. 

Use cases like social networks, routing, shopping, 

entertainment recommendations, and online data management 

(e.g., health tracking) become more and more important.

Graph Databases were developed to efficiently store, manage, 

and query that highly variable and richly connected data. 

GRAPH DATA MODEL
The underlying property graph 
model consists of labeled nodes 

connected by directed, named 

relationships, both of which can 

hold arbitrary properties. It allows 

for expressive representation of 

any domain or use case.

The property graph allows you to 

consistently use the same model 

throughout all phases of a software 

project, making it also usable for 

non-technical stakeholders.

With the schema optional model, you can evolve your domain 

model as quickly as your requirements change, as no costly 

schema changes and migrations are necessary. 

GRAPH QUERY LANGUAGE
To keep the richness of a graph model drawn on a whiteboard, 

we can use the declarative Cypher query language. It uses 

ASCII-Art to represent graph patterns of nodes and relationships. 

(:Customer)-[:BOUGHT]->(:Product) 
-[:IN_CATEGORY]->(:Category)

The query language is centered around these graph patterns. 

They can be used in clauses, expressions, and conditions to 

find and create data. Most of the non-pattern clauses were 

borrowed from other query languages like SQL.

Import (CSV) data, creating products: 

LOAD CSV WITH HEADERS FROM "url" AS row
MERGE (c:Category {id: row.catId}) 
 ON CREATE SET c.name = row.catName;
CREATE (p:Product {id: row.prodId}) 
 SET p.name = row.prodName
CREATE (p)-[:IN_CATEGORY {added:row.date}]->(c)

Query data - products for category: 

MATCH (p:Product)-[rel:IN_CATEGORY]->(c:Category) 
WHERE c.name CONTAINS "Ice"
RETURN p.name, c.name 
ORDER BY rel.added DESC;

BUILT-IN LUCENE INDEXES
For a long time, Neo4j has been using Apache Lucene to 

provide a lookup mechanism for starting points of graph 

traversals. Especially with explicit index procedures, you can 

use the full power of the Lucene query syntax to select the 

nodes your graph traversal would start with. Explicit Lucene 

indexes can also be configured with custom Analyzers and 

Stemmers as well as case sensitivity.

CALL db.index.explicit.searchNodes('products',    
  $searchQuery ) 
YIELD node as product, weight
MATCH (product)<-[:BOUGHT]-(user)-[:BOUGHT]->(reco)
RETURN reco, count(*) as freq, weight
ORDER BY freq * weight DESC LIMIT 10

DATABASE EXTENSIONS
As an open-source database system, Neo4j can be extended in 

a variety of ways. You can subscribe to database updates via a 

TransactionEventHandler, which gives you access to added, 

updated, and removed Nodes and Relationships and their 

labels and attributes. This can be used, for example, to send 

data to other, eventual consistent systems like a search engine 

or auditing system.

public String beforeCommit(TransactionData data) {
  data.createdNodes.forEach(node -> {
    replicateToElastic(node); 
  });
}

Furthermore, we can add user-defined procedures and 

functions that expose new capabilities to the Cypher query 

4 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH

https://www.elastic.co/guide/en/elasticsearch/reference/6.0/query-dsl.html
http://neo4j.com/docs/developer-manual/current/cypher/schema/index/#explicit-indexes-procedures


language, e.g., direct access to other data systems (like 

Elasticsearch) or even the underlying built-in Lucene indexes. 

A GRAPH-CENTRIC ARCHITECTURE FOR SEARCH 
PLATFORMS

 

The following high-level architecture contains:

•	 The knowledge graph as central element

•	 The type and amount of data to be processed

•	 The related data flows

•	 Requirements in terms of textual search capabilities

The data flow is composed of several data sources like product 

information sources, product offers, sellers, click streams, 

feedback, and more. All of these data items flow from outside 

to inside the data architecture using Apache Kafka as the queue 

and streaming platform for building real-time data pipelines. 

Information goes through a multi-step process where it is 

transformed before being stored in Neo4j, the main database 

of the infrastructure.

The raw sources are then enriched and processed and new 

relationships between objects are created. In this way, the 

knowledge graph is created and maintained. Many machine 

learning tools and data mining algorithms as well as Natural 

Language Processing operations are applied to the graph 

and new relationships are inferred and stored. In order to 

process this huge amount of data, an Apache Spark cluster is 

seamlessly integrated into the architecture through the Neo4j 

Spark Connector.

At this point, data is transformed into several document 

types and sent to an Elasticsearch cluster where it is stored as 

documents. In Elasticsearch, these documents are analyzed 

and indexed for providing text search. The front end interacts 

with Neo4j to provide advanced features that require graph 

queries that cannot be expressed using documents or simple 

text searches.

Neo4j is at the core of the architecture – it is the main database, 

the “single source of truth” of the product catalog, since it 

stores the entire knowledge graph on which all the searches 

and navigations are performed. It is a viable tool in a relevant 

search ecosystem, offering a suitable model not only for 

representing complex data (text, user models, business goals, 

and context information), but also for providing efficient ways 

of navigating this data in real time. 

SINGLE KNOWLEDGE GRAPH, MULTIPLE VIEWS

A knowledge graph is composed of entities and relationships 

that describe facts in the real world. The use of graphs for 

representing complex knowledge and storing them in an 

easy-to-query model has become prominent for information 

management. Sometimes defined as “encyclopaedias for 

machines,” knowledge graphs have become a crucial resource for 

advanced search, machine learning, and data mining applications. 

MULTIPLE DATA SOURCES, A SINGLE GRAPH
Graphs — and in particular, knowledge graphs — provide the 

right information structure to merge data coming from multiple 

data sources in a single source of truth.

The search architecture must be able to handle highly 

heterogeneous data in terms of sources, schema, volume, and 

frequency of generation.

Moreover, these data sources have to be accessed as a single 
data source, so they must be normalized and stored using a 

unified schema structure that satisfies all the informational and 

navigational requirements of a search.

A simplified example of such a knowledge graph is represented 

in the following image:

Once the plethora of data is organized in an organic and 

homogeneous structure, it goes through a process of 
enrichment that comprises three main categories: cleansing, 

existing data augmentation, and data merging.

5 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH



1.	 Cleansing. It’s usually well worth the time to parse 
through elements, look for mistakes such as misspellings 
and duplications, and correct them. Otherwise, users 
might not find a document because it contains a 
misspelling of the query term.

2.	 The existing data is post-processed to augment the 
features already there. For instance, machine learning 
techniques can be used to classify or cluster documents. 
The possibilities are endless. After this new metadata 
is connected to the main elements, it can serve as a 
valuable feature for users to search through.

3.	 New information is gathered from external sources like 
ConceptNet 5. The goal is to provide users with every 
possible opportunity to find the document they are 
looking for, even though users express the same meaning 
using different but related words. This means more and 
richer search features.

The result of that process is a highly connected knowledge 

graph that represents the single source of truth for each entity. 

This valuable source of knowledge needs to be accessed and 

navigated to be effective.

PROVIDE MULTIPLE VIEWS IN ELASTICSEARCH FOR 
FAST ACCESS
Graph queries allow you to access data exploiting connections 

between elements, but they don’t enable efficient textual 

searches. On the other side, search engines like Elasticsearch 

provide fast, reliable, and easy-to-tune textual searches.

In order to leverage such functionalities and provide efficient 

search to end users, data can be projected from the graph in a 

document format and stored in indexes in Elasticsearch. There, 

such documents can be analyzed according to the mapping 

defined for the index, and then become available for access 

using textual searches.

DEFINING MULTIPLE VIEW INDEXES
Since the knowledge graph represents multiple sets of 

information, the same data source can be used to serve multiple 

scopes, such as navigation and search, faceting, item details, 

and so on. Multiple views are, therefore, extracted and stored in 

several indexes in Elasticsearch, each of which could provide a 

different perspective on different types of search features.

Each view has to be designed, and this process requires you to:

1.	 Define the query to extract salient data from the graph;

2.	 Identify the list of fields in the document;

3.	 Choose the analyzers;

4.	 Define the mapping to the document.

This is an example of a query used to export the list of features for 

a specific product, taking different languages into consideration:

MATCH (p:Product)-[:HAS_DATA]->(pd:ProductData)
               -[:HAS_ATTRIBUTE]->(f:Attribute)
WHERE id(p) = {id}
MATCH (f)-[:HAS_KEY]->(k:Key)
MATCH (f)-[:HAS_VALUE]->(v:Value)
RETURN k.field_name as key, 
    collect(v.locale + ":" + v.data) as values

SYNCING UPDATES TO ELASTICSEARCH  

The updates in the graph database should be reflected in 

the Elasticsearch indexes. Ideally, the users should be able 

to define the graph entities to be replicated as well as the 

semantics of the documents that will be sent to Elasticsearch.

We call this configuration “replication mapping,” and as shown 

in the sections below, the GraphAware Neo4j to Elasticsearch 

plugin makes this configuration easy and flexible — it uses a 

JSON format and the Spring Expression Language. 

THE NEO4J ELASTICSEARCH PLUGIN
The GraphAware Neo4j to Elasticsearch plugin is an extension 

that takes care of replicating updates to the Graph as JSON 

documents to Elasticsearch.

Based on replication mapping, it does the following:

1.	 Inspect transactional changes asynchronously;

2.	 Determine if an update is relevant to be replicated;

3.	 Transform changes into JSON and send to Elasticsearch.

"node_mappings": [{
  "condition": "hasLabel('Person')",
  "type": "persons",
  "properties": {
    "name": "getProperty('firstName') + ' ' 
           + getProperty('lastName')"
  }
}]

This simple replication mapping dictates that updates (creations, 
updates, or deletes) of Person nodes should be replicated as 
an ES document with a name entry being a concatenation of the 
firstName and lastName properties.

EXAMPLE SETUP AND UPDATE WALKTHROUGH
Install and configure the plugin:

Download and install the following jars in the plugins directory 
of your Neo4j database:

•	 graphaware-server-community-all-3.3.x.jar

•	 graphaware-neo4j-to-elasticsearch-3.3.x.jar

Enable the plugin and provide your first replication mapping:

6 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH

https://github.com/graphaware/neo4j-to-elasticsearch


Add to conf/neo4j.conf configuration

com.graphaware.runtime.enabled=true
com.graphaware.module.ES.1=\
  com.graphaware.module.es.ElasticSearchModuleBootstrapper
com.graphaware.module.ES.uri=localhost
com.graphaware.module.ES.port=9201
com.graphaware.module.ES.relationship=(true)
com.graphaware.module.ES.mapping=\
  com.graphaware.module.es.mapping.JsonFileMapping
com.graphaware.module.ES.file=mapping.json

Configuration in conf/mapping.json

{ "defaults": {
   "key_property": "uuid",
   "nodes_index": "node-index",
   "relationships_index": "relationship-index",
   "include_remaining_properties": true,
   "blacklisted_node_properties": ["password"],
   "blacklisted_relationship_properties": ["uuid"],
   "exclude_empty_properties": false},
	
  "node_mappings": [{
     "condition": "hasLabel('Person')",
     "type": "persons",
     "properties": {
       "name": "getProperty('firstName') + ' ' 
              + getProperty('lastName')",
       "labels": "getLabels()"
     },{
     "condition": "getLabels().length == 0",
     "type": "nodes-without-labels"
   }],

  "relationship_mappings": [{
     "condition": "isType('WORKS_AT')",
     "type": "workers"
}]}

•	 defaults map that will be applied to all definitions

•	 uuid setting: which property of a node or relationship 
will be used as the unique identifier as well as the ES 
document ID

•	 include_remaining_properties has to include the properties 
of the object that are not specified in the definition

Now, restart the Neo4j server and the extension is ready to use.

CUSTOMIZING RESULTS USING RECOMMENDATIONS  
Users’ behavior and preferences can become a new source of 
information.

PROFILE-BASED PERSONALIZATION
Tracking knowledge of individual users happens with profiles. 
At query time, the user profile and its information is used to 
boost documents accordingly.

User profiles can be gathered differently:

•	 explicitly users provide information (ages, location, gender, 
and so on);

•	 implicitly determine user interests, demographics, and 
other attributes by observing user behavior.

User profiles can be used during search, e.g., by respecting 
brand affinity or interest in reviews or detailed product 
information.

BEHAVIORAL-BASED PERSONALIZATION
The notion described above can be improved with collaborative 
filtering. This technique uses historical information about user-
item interactions (“users that bought this also bought these”) to 
find items that naturally clump together by predicting peer-
group behavior.

The output is a model that determines which items are most 
closely associated to a given user or item.

TYING USER BEHAVIOR AND PROFILE INFORMATION 
BACK TO THE SEARCH INDEX
Let’s consider a standard, text-only search approach by incorpo-
rating collaborative filtering or profile as a multiplicative boost.

Our starting query is:

{ 
  "query": {
    "multi_match": {
      "query": "summer dress",
      "fields": ["title^3", "description"]
    }}}

To incorporate collaborative filtering, apply a multiplicative 
boost using a function_score query:

{
  "query": {
    "function_score": {
      "query": {
        "multi_match": {
          "query": "summer dress",
          "fields": ["title^3", "description"]
        }
      },
      "functions": [{
        "filter": { COLLAB_FILTER },
        "weight": 1.1}]
}}}

The contents of your COLLAB_FILTER filter determines the 
boosted documents; their score is multiplied with the  
weight: 1.1 (plus 10%).

The different scores affect the ordering of the search results so 
that users will see results first that are more relevant based on 
their previous behavior.

With this approach the strategies for incorporating collabora-
tive filtering can be implemented, each of which corresponds 
to a different COLLAB_FILTER- and indexing strategy. The 
strategies can also be combined.

7 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH



Boost at Query Time. If the output of the collaborative filtering 
process is a set of user-to-item affinities, a suitable COLLAB_
FILTER function can be specified:

COLLAB_FILTER = {
  "terms": {
    "id": ["item4816", "item3326", "item9432"]
  }
}

The system knows that the user performing the query could 
be interested in these named items. The search result is then 
modified to boost the score of these product by 10%.

Boost at Index Time. Add a new field to the documents being 
indexed named, for example, users_who_might_like with a 
list of all users who might like a given item. At query time, the 
COLLAB_FILTER will contain the user performing the query so 
that this will be used for boosting the results.

COLLAB_FILTER = {
  "term": {
    "users_who_might_like": "user121212"
  }
}

SEARCHING WITH GRAPH BOOST  
There are two different implementations that allow you to 
seamlessly extend searches provided by Elasticsearch with 
features such as customization and concept search.

GRAPH-AIDED SEARCH APPROACH
The Graph-Aided Search Plugin improves search results by using 
data stored in Neo4j. After the search, and before returning the 
results to the user, this plugin requests additional information from 
the graph to achieve its goal.

Two main features are exposed by the plugin:

•	 Result Boosting: Change the scores of results. The new 
score can be computed by combining search score with the 
graph score with different weights or custom formulas.

Usage examples include boosting: 

1.	 based on interest prediction (recommendations), 

2.	 based on friends’ interests/likes, 

3.	 content-based scoring, and 

4.	 other graph-based scoring methods.

•	 Result Filtering: Removing result documents with filters 
using Cypher queries that match document IDs.

Example query with boost:

{ "query" : {
      "match_all" : {}},
  "gas-booster" :{
    "name": "SearchResultCypherBooster",
    "query": 
      "MATCH (input:User) WHERE id(input) = 2
       MATCH p=(input)-[r:RATED]-> 
       (product)<-[r2:RATED]-(other)
       WITH other, 
       collect(reduce(i=0, r in rels(p) | i+r.rating))  
       as ratings
       WITH other, 
            reduce(x=0, rating in ratings | x+rating) 
            as score
       WITH other, score
       ORDER BY score DESC
       MATCH (other)-[:RATED]->(reco)
       RETURN reco.objectId as id, score
       LIMIT 500",
    "maxResultSize": 1000,
    "scoreName": "score",
    "identifier": "id"
     }
}

This query boosts the products in the result that are of interest 
to the customer, based on previous ratings.

The query processing steps are:

1.	 Intercept and parse any “Search query” and try to find 
the GraphAidedSearch extension parameter;

2.	 Process the query extension identifying the type of 
the extension (boosting or a filter) and instantiate the 
related class;

3.	 Perform the operation required to boost or filter by calling 
the Neo4j API (or a Neo4j extension like GraphAware 
Recommendation Engine), passing all necessary 
information, e.g., Cypher query, target user, etc.;

8 GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

DZONE.COM  |  © DZONE, INC. BROUGHT TO YOU IN PARTNERSHIP WITH

https://github.com/graphaware/graph-aided-search


4.	 Return the filtered/boosted result set back to the user.

KNOWLEDGE GRAPH APPROACH
The previously described approach has the drawback of having 
to post-process a potentially large set of search results, which 
can be compute-intensive. We can flip that around by pre-
processing the query that gets sent to the search engine. 

The knowledge graph is the source of truth. Its data is inserted 
into Elasticsearch as several documents, with potentially 
different structures or additional fields to existing documents.

During this phase, concept search, personalizations and any 
other advanced features described earlier are applied. So 
for instance, fields like users_who_might_also_like or 
concepts are added to documents. Token vectors are enriched 
with synonym hierarchies.

Once the documents are created and stored, we can use the 
following technique:

1.	 Intercept the query and enrich it using data in the 
knowledge graph (user preferences, user profile, other 
concepts), as of filters or queries;

2.	 The advanced query is then submitted to Elasticsearch;

3.	 The results of the query are returned to the user.

This workflow is easier and more performant since the 
enrichment phase happens at the beginning and is performed on 
a smaller dataset. Only that enriched query runs on the search 
engine without post-processing, ands so it will be very fast.

REFERENCES
•	 [1] D. Turnbull, J. Berryman – Relevant Search, Manning

•	 [2] A. L. Farris, G. S. Ingersoll, and T. S. Morton – Taming 
Text, Manning

•	 Neo4j

•	 Elasticsearch

•	 GraphAidedSearch Extension

9

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, 
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. 

DZone communities deliver over 6 million pages each month to more than 3.3 million software developers, architects and 

decision makers. DZone offers something for everyone, including news, tutorials, cheat sheets, research guides, feature 

articles, source code and more. "DZone is a developer's dream," says PC Magazine.

Refcardz Feedback Welcome: refcardz@dzone.com 

Sponsorship Opportunities:  sales@dzone.com 

DZone, Inc.  150 Preston Executive Dr.  Cary, NC 27513

888.678.0399  -  919.678.0300 

GRAPH-POWERED SEARCH: NEO4J & ELASTICSEARCH

BROUGHT TO YOU IN PARTNERSHIP WITH

DR. ALESSANDRO NEGRO  is the Chief Scientist at GraphAware. He has been a long-time member of the graph community and he is the main author 
of the first-ever recommendation engine based on Neo4j. At GraphAware, he specialises in natural language processing, recommendation engines and 
graph-aided search. Before joining the team, Alessandro gained over 10 years of experience in software development and spoke at many prominent 
conferences, such as JavaOne. Alessandro holds a Ph.D. in Computer Science from University of Salento. He is based in Southern Italy but travels to 
clients around the world.

MICHAEL HUNGER has been developing software for more than 30 years in all kinds of domains. For the last few years he has been working with 
Neo4j, filling many roles. As caretaker of the Neo4j community and ecosystem he especially loves to work with graph-related projects, users and 
contributors. He is currently project lead for spring-data-neo4j, neo4j-graph-algorithms and the neo4j-apoc-procedures libraries. As a developer 
Michael enjoys many aspects of programming languages, (human and machine) learning, participating in exciting and ambitious open source projects 
and contributing and writing software-related books and articles. He’s also a frequent speaker at and organizer for software development conferences.

CHRISTOPHE WILLEMSEN  is a Principal Consultant at GraphAware. Before joining the team, Christophe worked as communication systems 
engineer for the Belgian Navy for almost 15 years and taught courses about maritime distress and emergency communication systems. He is a skilled 
software engineer who has led many big projects in HR and Operations Departments. Christophe is the author of Graphgen, an online graph generation 
engine for Neo4j, which received a Graphie Award during GraphConnect San Francisco 2014, and an active member of the Neo4j community.

ABOUT THE AUTHORS

http://neo4j.com/developer
https://www.elastic.co/products/elasticsearch
https://github.com/graphaware/neo4j-to-elasticsearch
mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://www.dzone.com

