Resources - NLP

Videos, Slides, Case Studies and other GraphAware related resources

NODES2022 - Keyword Disambiguation Using Transformers and Clustering to Build Cleaner Knowledge

25 Nov 2022 videos KG NLP

Federica Ventruto and Alessia Melania Lonoce are Junior Data Scientists at GraphAware who spoke at NODES2022. Natural language processing is an indispensable toolkit to build knowledge graphs from unstructured data. However, it comes with a price. Keywords and entities in unstructured texts are ambiguous - the same concept can be expressed by many different linguistic variations. The resulting knowledge graph would thus be polluted with many nodes representing the same entity without any order. In this session, we show how the semantic similarity based on transformer embeddings and agglomerative clustering can help in the domain of academic disciplines and research fields and how Neo4j improves the browsing experience of this knowledge graph.

NODES2022 - Data Management with Knowledge Graphs Bringing Archives to Life

25 Nov 2022 videos KG NLP

Vlasta Kůs is Lead Data Scientist at GraphAware and presented at NODES2022. Public archives contain incredible amount of knowledge. In this session, we’ll cover a real use case of building a knowledge graph for the archive of a major foundation to help empower researchers (or business analysts) to access previously unavailable levels of insights. This archive, going up to a century back, contains detailed information about funded projects and conversations preceding them, budgets, research endeavors, and outcomes, as well as priceless knowledge about influence networks of foundation representatives, researchers, and students. A particular challenge was that the same events were described in multiple sources. The only way to leverage all of this knowledge was through the use of advanced analytics and machine learning. We will explore the technologies (including OCR, NLP, and graph data science) and complex pipelines employed to create this major knowledge graph.

Signals from outer space

29 Oct 2018 slides NLP

Vlasta Kus talked about the advantages of graph-based natural language processing (NLP) using a public NASA dataset as example. From his abstract: “[…] we are building a platform (from large part open-source) that integrates Neo4j and NLP (such as Named Entity Recognition, sentiment analysis, word embeddings, LDA topic extraction), and we test and develop further related features and tools, lately, for example, integrating Neo4j and Tensorflow for employing deep learning techniques (such as deep auto-encoders for automatic text summarisation).”

Knowledge Graphs and Chatbots with Neo4j and Amazon Alexa

28 Mar 2018 videos KG Neo4j NLP chatbots

Knowledge Graphs are becoming the de-facto solution for managing complex aggregated knowledge, and Neo4j is the leading platform for storing and querying connected data. In this talk, Christophe will describe a graph-centric cognitive computing pipeline and detail the process from the ingestion of unstructured text up to the generation of a knowledge graph, queryable using natural language through chatbots built with IBM Watson Conversation.