Resources - KG - page 2

Videos, Slides, Case Studies and other GraphAware related resources

Knowledge Graphs in Action

17 Dec 2019 videos KG

In this presentation, you’ll learn how companies are building Knowledge Graphs with Neo4j and the Hume platform in order to surface previously undiscoverable insights. We’ll go over the process of analysing unstructured data using Machine Learning techniques and how graphs are a wonderful representation for storing Knowledge, making it naturally connectable. Lastly, a Graph Visualisation demonstration will take place, showing new insights discovered from the results of the previous operations.

Social media monitoring with ML-powered Knowledge Graph

10 Oct 2019 videos ML KG

Ever wondered how ML can be used to build a Knowledge Graph to allow businesses to successfully differentiate and compete today? We will demonstrate how Computer Vision, NLP/U, knowledge enrichment and graph-native algorithms fit together to build powerful insights from various unstructured data sources.

Challenges in knowledge graph visualization

10 Oct 2019 videos KG visualisation

Visualizing a complex graph is a task of graph simplification and providing well-thought visual cues, the best UI goes unnoticed. This talk will summarize current approaches and present a novel user interaction pattern, which takes advantage of a performant Neo4j graph engine.

Knowledge Graphs and Chatbots with Neo4j and Amazon Alexa

28 Mar 2018 videos KG Neo4j NLP chatbots

Knowledge Graphs are becoming the de-facto solution for managing complex aggregated knowledge, and Neo4j is the leading platform for storing and querying connected data. In this talk, Christophe will describe a graph-centric cognitive computing pipeline and detail the process from the ingestion of unstructured text up to the generation of a knowledge graph, queryable using natural language through chatbots built with IBM Watson Conversation.

Voice-driven Knowledge Graph Journey with Neo4j and Amazon Alexa

21 Nov 2017 slides KG Neo4j

In 2016, 25% of web searches on Android were made by voice and this percentage is predicted to double by 2018. From Amazon Alexa to Google Home, smartwatches and in-car systems, touch is no longer the primary user interface. In this talk, Alessandro and Christophe will demonstrate how graphs and machine learning are used to create an extracted and enriched graph representation of knowledge from text corpus and other data sources. This representation will then be used to map user intents made by voice to an entry point in this Neo4j backed knowledge graph. Every user interaction will then have to be taken into account at any further steps and we will highlight why graphs are an ideal data structure for keeping an accurate representation of a user context in order to avoid what is called machine or bot amnesia. The speakers will then conclude the session by explaining about how recommendations algorithms are used to predict next steps of the user’s journey.