New Case Study
Reaching the “Single Brain” with Hume
‘The amount of savings in time and effort [the search optimization] can deliver for our home offices, for our customers, is incredible.’
--Mayank Gupta, SVP for data, LPL Financial
‘The amount of savings in time and effort [the search optimization] can deliver for our home offices, for our customers, is incredible.’
--Mayank Gupta, SVP for data, LPL Financial
Presentation by Dr. Alessandro Negro, Chief Scientist at GraphAware and author of the Manning’s book Graph-powered machine learning, that covers the following topics:
Why unlimited scale is important when using graph databases
The new graph database scaling capabilities built by Neo4j developers
The role of graphs to support machine learning application
How Neo4j assists customers in scaling their applications
Concrete examples of machine learning projects that can leverage graph sharding
The recording is available as well: https://bit.ly/39ZqFVE
Graph-Powered machine learning is becoming an important trend in Artificial Intelligence, transcending a lot of other techniques. Using graphs as basic representation of data for ML purposes has several advantages: (i) the data is already modeled for further analysis, explicitly representing connections and relationships between things and concepts; (ii) graphs can easily combine multiple sources into a single graph representation and learn over them, creating Knowledge Graphs; (iii) improving computation performances and quality. The talk will discuss these advantages and present applications in the context of recommendation engines and natural language processing.
View Vlasta’s slides from Paris Meetup in March 5, 2018.