Resources - NLP

Videos, Slides, Case Studies and other GraphAware related resources

Signals from outer space

29 Oct 2018 slides NLP

Vlasta Kus talked about the advantages of graph-based natural language processing (NLP) using a public NASA dataset as example. From his abstract: “[…] we are building a platform (from large part open-source) that integrates Neo4j and NLP (such as Named Entity Recognition, sentiment analysis, word embeddings, LDA topic extraction), and we test and develop further related features and tools, lately, for example, integrating Neo4j and Tensorflow for employing deep learning techniques (such as deep auto-encoders for automatic text summarisation).”

Knowledge Graphs and Chatbots with Neo4j and Amazon Alexa

28 Mar 2018 videos KG Neo4j NLP chatbots

Knowledge Graphs are becoming the de-facto solution for managing complex aggregated knowledge, and Neo4j is the leading platform for storing and querying connected data. In this talk, Christophe will describe a graph-centric cognitive computing pipeline and detail the process from the ingestion of unstructured text up to the generation of a knowledge graph, queryable using natural language through chatbots built with IBM Watson Conversation.

Chatbots and Voice Conversational Interfaces with Amazon Alexa, Neo4j and GraphAware NLP

27 Jun 2017 slides NLP Neo4j chatbots

During this talk, Christophe, Principal Consultant at GraphAware will walk you through the design of building Conversational Bots. To this end, he used Amazon Alexa and combined it with a Natural Language Processing stack backed by a Neo4j Graph Database.
You will discover the basics of an Amazon Alexa skill and how the user experience with voice devices can be enhanced with graph based algorithms such as recommendations.

Taming text with Neo4j: The Graphaware NLP Framework

05 Apr 2017 videos Neo4j NLP GraphAware unstructured data

A great part of the world’s knowledge is stored using text in natural language, but using it in an effective way is still a major challenge. Natural Language Processing (NLP) techniques provide the basis for harnessing this huge amount of data and converting it into a useful source of knowledge for further processing. By Alessandro Negro, Chief Scientist, GraphAware.